Boundedness for parabolic singular integral with rough kernels and its commutators on Triebel-Lizorkin spaces

被引:0
作者
Tao, Shuang Ping [1 ]
Niu, Yao Ming [2 ]
机构
[1] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Peoples R China
[2] Baotou Teachers Coll, Fac Math, Baotou 014030, Peoples R China
基金
中国国家自然科学基金;
关键词
Parabolic singular integral; Triebel-Lizorkin spaces; commutator; parabolic BMO; DECOMPOSITIONS; OPERATORS; CURVES;
D O I
10.1007/s10114-011-8372-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors give the boundedness on Triebel-Lizorkin spaces for the parabolic singular integral with rough kernel and its commutator.
引用
收藏
页码:1783 / 1802
页数:20
相关论文
共 50 条
[31]   Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces [J].
Kôzô Yabuta .
Journal of Inequalities and Applications, 2015
[32]   The Boundedness of Commutators of Sublinear Operators on Herz Triebel-Lizorkin Spaces with Variable Exponent [J].
Fang, Chenglong ;
Wei, Yingying ;
Zhang, Jing .
RESULTS IN MATHEMATICS, 2023, 78 (02)
[33]   Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces [J].
Liu, Feng ;
Xue, Qingying ;
Yabuta, Kozo .
SCIENCE CHINA-MATHEMATICS, 2020, 63 (05) :907-936
[34]   SINGULAR INTEGRALS WITH NON-STANDARD KERNELS ON TRIEBEL-LIZORKIN SPACES [J].
Chang, Der-chen ;
Li, Enhui ;
Wu, Xinfeng .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2025, 9 (02) :229-246
[35]   Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces of revolution [J].
DING Yong ;
YABUTA Kz .
Science China(Mathematics), 2016, 59 (09) :1721-1736
[36]   Boundedness of an Oscillating Multiplier on Triebel-Lizorkin Spaces [J].
Wei CAO Jie Cheng CHEN Department of MathematicsZhejiang UniversityHangzhou PRChina Da Shan FAN Department of MathematicsUniversity of WisconsinMilwaukee MilwaukeeWIUSA .
Acta Mathematica Sinica(English Series), 2010, 26 (11) :2071-2084
[37]   Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces of revolution [J].
Yong Ding ;
Kôzô Yabuta .
Science China Mathematics, 2016, 59 :1721-1736
[38]   Boundedness of an oscillating multiplier on Triebel-Lizorkin spaces [J].
Wei Cao ;
Jie Cheng Chen ;
Da Shan Fan .
Acta Mathematica Sinica, English Series, 2010, 26 :2071-2084
[39]   A Class of Oscillatory Singular Integrals with Hardy Kernels on Triebel-Lizorkin Spaces and Besov Spaces [J].
Yao Ming NIU 1 ;
2.College of Mathematics and Information Science .
Journal of Mathematical Research with Applications, 2011, (03) :509-520
[40]   Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces [J].
Feng Liu ;
Qingying Xue ;
Kôzô Yabuta .
Science China Mathematics, 2020, 63 :907-936