Boundedness for parabolic singular integral with rough kernels and its commutators on Triebel-Lizorkin spaces

被引:0
作者
Tao, Shuang Ping [1 ]
Niu, Yao Ming [2 ]
机构
[1] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Peoples R China
[2] Baotou Teachers Coll, Fac Math, Baotou 014030, Peoples R China
基金
中国国家自然科学基金;
关键词
Parabolic singular integral; Triebel-Lizorkin spaces; commutator; parabolic BMO; DECOMPOSITIONS; OPERATORS; CURVES;
D O I
10.1007/s10114-011-8372-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors give the boundedness on Triebel-Lizorkin spaces for the parabolic singular integral with rough kernel and its commutator.
引用
收藏
页码:1783 / 1802
页数:20
相关论文
共 50 条
[21]   The Continuity of Commutators on Triebel-Lizorkin Spaces [J].
Lanzhe Liu .
Integral Equations and Operator Theory, 2004, 49 :65-75
[22]   Commutators estimates on Triebel-Lizorkin spaces [J].
Jiang, Liya ;
Jia, Houyu ;
Xu, Han .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2006, 49 (03) :414-427
[23]   Boundedness of an oscillating multiplier on Triebel-Lizorkin spaces [J].
Cao, Wei ;
Chen, Jie Cheng ;
Fan, Da Shan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (11) :2071-2084
[24]   Boundedness of certain singular integrals along surfaces on Triebel-Lizorkin spaces [J].
Liu, Feng ;
Wu, Huoxiong ;
Zhang, Daiqing .
FORUM MATHEMATICUM, 2015, 27 (06) :3439-3460
[25]   Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces of revolution [J].
Ding Yong ;
Yabuta, Kozo .
SCIENCE CHINA-MATHEMATICS, 2016, 59 (09) :1721-1736
[26]   BOUNDEDNESS OF SINGULAR INTEGRALS AND MAXIMAL SINGULAR INTEGRALS ON TRIEBEL-LIZORKIN SPACES [J].
Zhang, Chunjie ;
Chen, Jiecheng .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (02) :157-168
[27]   ROUGH SINGULAR INTEGRALS ASSOCIATED TO SURFACES OF REVOLUTION ON TRIEBEL-LIZORKIN SPACES [J].
Liu, Feng .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (05) :1617-1653
[28]   ROUGH SINGULAR INTEGRALS SUPPORTED BY SUBMANIFOLDS IN TRIEBEL-LIZORKIN SPACES AND BESOVE SPACES [J].
Liu, Feng ;
Wu, Huoxiong .
TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (01) :127-146
[29]   Rough maximal singular integral and maximal operators supported by subvarieties on Triebel-Lizorkin spaces [J].
Liu, Feng ;
Xue, Qingying ;
Yabuta, Kozo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 171 :41-72
[30]   A note on rough singular integrals in Triebel-Lizorkin spaces and Besov spaces [J].
Feng Liu ;
Huoxiong Wu ;
Daiqing Zhang .
Journal of Inequalities and Applications, 2013