Renormings and symmetry properties of 1-greedy bases

被引:10
作者
Dilworth, S. J. [2 ]
Odell, E. [3 ]
Schlumprecht, Th. [4 ]
Zsak, A. [1 ]
机构
[1] Univ Cambridge, Peterhouse, Cambridge CB2 1RD, England
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[4] Texas A&M Univ, Dept Math, College Stn, TX 78712 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
m-term approximation; Greedy basis; Renorming; Symmetric basis; Subsymmetric basis; GREEDY ALGORITHMS; SPACE;
D O I
10.1016/j.jat.2011.02.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of 1-greedy bases initiated by Albiac and Wojtaszczyk (2006) [1]. We answer several open problems that they raised concerning symmetry properties of 1-greedy bases and the improving of the greedy constant by renorming. We show that 1-greedy bases need not be symmetric or subsymmetric. We also prove that one cannot in general make a greedy basis 1-greedy as demonstrated for the Haar basis of the dyadic Hardy space H(1) (R) and for the unit vector basis of Tsirelson space. On the other hand, we give a renorming of L(p) (1 < p < infinity) that makes the Haar basis 1-unconditional and 1-democratic. Other results in this paper clarify the relationship between various basis constants that arise in the context of greedy bases. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1049 / 1075
页数:27
相关论文
共 12 条
[1]   Characterization of 1-greedy bases [J].
Albiac, F ;
Wojtaszczyk, P .
JOURNAL OF APPROXIMATION THEORY, 2006, 138 (01) :65-86
[2]  
[Anonymous], 2003, Constructive Theory of Functions
[3]   On the convergence of greedy algorithms for initial segments of the Haar basis [J].
Dilworth, S. J. ;
Odell, E. ;
Schlumprecht, Th. ;
Zsak, Andras .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 148 :519-529
[4]   The thresholding greedy algorithm, greedy bases, and duality [J].
Dilworth, SJ ;
Kalton, NJ ;
Kutzarova, D ;
Temlyakov, VN .
CONSTRUCTIVE APPROXIMATION, 2003, 19 (04) :575-597
[5]  
FIGIEL T, 1974, COMPOS MATH, V29, P179
[6]   SYMMETRIC BASES OF LOCALLY CONVEX SPACES [J].
GARLING, DJH .
STUDIA MATHEMATICA, 1968, 30 (02) :163-&
[7]  
Hardy G., 1952, CAMBRIDGE MATH LIB
[8]  
Konyagin S.V., 1999, East. J. Approx., V5, P365
[9]   Remarks about Schlumprecht space [J].
Kutzarova, D ;
Lin, PK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) :2059-2068
[10]  
[Лившиц Евгений Давидович Livshits Evgenii Davidovich], 2010, [Математический сборник, Sbornik: Mathematics, Matematicheskii sbornik], V201, P95, DOI 10.4213/sm7517