BaZr0.8Y0.2O3-delta, (BZY), a protonic conductor candidate as an electrolyte for intermediate temperature (500-700 degrees C) solid oxide fuel cells (IT-SOFCs), was prepared using a sol-gel technique to control stoichiometry and microstructural properties. Several synthetic parameters were investigated: the metal cation precursors were dissolved in two solvents (water and ethylene glycol), and different molar ratios of citric acid with respect to the total metal content were used. A single phase was obtained at a temperature as low as 1,100 degrees C. The powders were sintered between 1,450 and 1,600 degrees C. The phase composition of the resulting specimens was investigated using X-ray diffraction (XRD) analysis. Microstructural characterisation was performed using field emission scanning microscopy (FE-SEM). Chemical stability of the BZY oxide was evaluated upon exposure to CO2 for 3 h at 900 degrees C, and BZY showed no degradation in the testing conditions. Fuel cell polarisation curves on symmetric Pt/BZY/Pt cells of different thicknesses were measured at 500-700 degrees C. Improvements in the electrochemical performance were obtained using alternative materials for electrodes, such as NiO-BZY cermet and LSCF (La0.8Sr0.2Co0.8Fe0.2O3) and reducing the thickness of the BZY electrolyte, reaching a maximum value of power density of 7.0 mW cm(-2) at 700 degrees C.