Life and death with arsenic Arsenic life: An analysis of the recent report "A bacterium that can grow by using arsenic instead of phosphorus"

被引:57
作者
Rosen, Barry P. [1 ]
Ajees, A. Abdul [1 ]
McDermott, Timothy R. [2 ,3 ]
机构
[1] Florida Int Univ, Dept Cellular Biol & Pharmacol, Herbert Wertheim Coll Med, Miami, FL 33199 USA
[2] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA
[3] Montana State Univ, Thermal Biol Inst, Bozeman, MT 59717 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
arsenate; arsenic life; ester hydrolysis; phosphate; INORGANIC-PHOSPHATE TRANSPORT; ESCHERICHIA-COLI; BACILLUS-SUBTILIS; ADP-ARSENATE; GENES; ENVIRONMENT; METABOLISM; OXIDATION; METHYLTRANSFERASE; PARTICLES;
D O I
10.1002/bies.201100012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Arsenic and phosphorus are group 15 elements with similar chemical properties. Is it possible that arsenate could replace phosphate in some of the chemicals that are required for life? Phosphate esters are ubiquitous in biomolecules and are essential for life, from the sugar phosphates of intermediary metabolism to ATP to phospholipids to the phosphate backbone of DNA and RNA. Some enzymes that form phosphate esters catalyze the formation of arsenate esters. Arsenate esters hydrolyze very rapidly in aqueous solution, which makes it improbable that phosphorous could be completely replaced with arsenic to support life. Studies of bacterial growth at high arsenic: phosphorus ratios demonstrate that relatively high arsenic concentrations can be tolerated, and that arsenic can become involved in vital functions in the cell, though likely much less efficiently than phosphorus. Recently Wolfe-Simon et al. [1] reported the isolation of a microorganism that they maintain uses arsenic in place of phosphorus for growth. Here, we examine and evaluate their data and conclusions.
引用
收藏
页码:350 / 357
页数:8
相关论文
共 55 条
[1]   MICROBE GROWS BY REDUCING ARSENIC [J].
AHMANN, D ;
ROBERTS, AL ;
KRUMHOLZ, LR ;
MOREL, FMM .
NATURE, 1994, 371 (6500) :750-750
[2]   DETERMINATION OF ARSENIC SPECIES IN NATURAL-WATERS [J].
ANDREAE, MO .
ANALYTICAL CHEMISTRY, 1977, 49 (06) :820-823
[3]   ACCUMULATION OF A NOVEL GLYCOLIPID AND A BETAINE LIPID IN CELLS OF RHODOBACTER-SPHAEROIDES GROWN UNDER PHOSPHATE LIMITATION [J].
BENNING, C ;
HUANG, ZH ;
GAGE, DA .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1995, 317 (01) :103-111
[4]  
Bhattacharjee H., 2007, MICROBIOL MONOGRAPHS, V6/2007, P371, DOI [DOI 10.1007/7171_2006_086, 10.1007/7171_2006_086]
[5]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[6]   Mining the diatom genome for the mechanism of biosilicification [J].
Brzezinski, Mark A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (05) :1391-1392
[7]  
CHALLENGER F, 1951, ADV ENZYMOL REL S BI, V12, P429
[8]  
CHAN TL, 1969, J BIOL CHEM, V244, P2883
[9]  
CHEN CM, 1990, J BIOL CHEM, V265, P4461
[10]  
Committee on Medical and Biological Effects of Environmental Pollutants. National Research Council Authoring Organizations, 1977, ARS MED BIOL EFF ENV