Liouville-type results for stationary maps of a class of functional related to pullback metrics

被引:12
作者
Asserda, Said [1 ]
机构
[1] Univ Ibn Tofail, Lab Anal Math & Syst Informat, Fac Sci, Dept Math, Kenitra, Morocco
关键词
Pullback metrics; Stress-energy tensor; Conservation law;
D O I
10.1016/j.na.2012.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a generalized functional related to the pullback metrics (3). We derive the first variation formula which yield stationary maps. We introduce the stress-energy tensor which is naturally linked to conservation law and yield the monotonicity formula via the coarea formula and the comparison theorem in Riemannian geometry. A version of this monotonicity inequalities enables us to derive some Liouville type results. Also, we investigate the constant Dirichlet boundary value problems and the generalized Chern type results for tension field equation with respect to this functional. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3480 / 3492
页数:13
相关论文
共 10 条
[1]  
Ara M., 1999, Kodai Math. J., V22, P243
[2]  
Baird P., 1980, S UTR 1980
[3]   Stress-energy tensors and the Lichnerowicz Laplacian [J].
Baird, Paul .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (10) :1329-1342
[4]  
Chern S. S., 1965, ABB MATH SEM HUMBURG, V29, P71
[5]  
Ding Y. X., COMM MATH P IN PRESS
[6]  
GREENE R, 1979, LECT NOTES MATH, V699
[7]  
Kassi M., 2006, ELECTRON J DIFFER EQ, V15, P1
[8]   Some results for stationary maps of a functional related to pullback metrics [J].
Kawai, Shigeo ;
Nakauchi, Nobumitsu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) :2284-2295
[9]  
Lee Y. I., ARXIV10113138V1
[10]   A variational problem for pullback metrics [J].
Nakauchi, Nobumitsu ;
Takenaka, Yumi .
RICERCHE DI MATEMATICA, 2011, 60 (02) :219-235