Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow

被引:23
作者
Grasselli, M. [1 ]
Wu, H. [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Sch Math Sci, Shanghai 200433, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2011年 / 62卷 / 06期
关键词
Liquid crystal flow; Kinematic transport; Global attractor; Finite fractal dimension; APPROXIMATION; REGULARITY; EXISTENCE;
D O I
10.1007/s00033-011-0157-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a 2D system that models the nematic liquid crystal flow through the Navier-Stokes equations suitably coupled with a transport-reaction-diffusion equation for the averaged molecular orientations. This system has been proposed as a reasonable approximation of the well-known Ericksen-Leslie system. Taking advantage of previous well-posedness results and proving suitable dissipative estimates, here we show that the system endowed with periodic boundary conditions is a dissipative dynamical system with a smooth global attractor of finite fractal dimension.
引用
收藏
页码:979 / 992
页数:14
相关论文
共 50 条
[41]   THE WEAK SIGMA-ATTRACTOR FOR THE SEMI-DISSIPATIVE 2D BOUSSINESQ SYSTEM [J].
He, Jinfang ;
Sun, Chunyou .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (03) :1219-1231
[42]   Global attractor of 2D autonomous g-Navier-Stokes equations [J].
姜金平 ;
王小霞 .
Applied Mathematics and Mechanics(English Edition), 2013, 34 (03) :385-394
[43]   On whether zero is in the global attractor of the 2D Navier-Stokes equations [J].
Foias, Ciprian ;
Jolly, Michael S. ;
Yang, Yong ;
Zhang, Bingsheng .
NONLINEARITY, 2014, 27 (11) :2755-2770
[44]   Global strong and weak solutions to inhomogeneous nematic liquid crystal flow in two dimensions [J].
Li, Jinkai .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 99 :80-94
[45]   Global attractor of 2D autonomous g-Navier-Stokes equations [J].
Jin-ping Jiang ;
Xiao-xia Wang .
Applied Mathematics and Mechanics, 2013, 34 :385-394
[46]   Global attractor of 2D autonomous g-Navier-Stokes equations [J].
Jiang, Jin-ping ;
Wang, Xiao-xia .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2013, 34 (03) :385-394
[47]   H 4-boundedness of pullback attractor for a 2D non-Newtonian fluid flow [J].
Liu, Guowei ;
Zhao, Caidi ;
Cao, Juan .
FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (06) :1377-1390
[48]   A FINITE ELEMENT ALGORITHM FOR NEMATIC LIQUID CRYSTAL FLOW BASED ON THE GAUGE-UZAWA METHOD [J].
Huang, Pengzhan ;
He, Yinnian ;
Li, Ting .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (01) :26-43
[49]   APPROXIMATION OF THE TRAJECTORY ATTRACTOR OF THE 3D SMECTIC-A LIQUID CRYSTAL FLOW EQUATIONS [J].
Wang, Xiuqing ;
Qin, Yuming ;
Miranville, Alain .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) :3805-3827
[50]   GLOBAL REGULARITY TO THE 2D INHOMOGENEOUS LIQUID CRYSTAL FLOWS WITH LARGE INITIAL DATA AND VACUUM [J].
Liu, Y. A. N. G. ;
Guo, R. E. N. Y. I. N. G. ;
Zhou, N. A. N. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (06) :2085-2099