Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow

被引:23
作者
Grasselli, M. [1 ]
Wu, H. [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Sch Math Sci, Shanghai 200433, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2011年 / 62卷 / 06期
关键词
Liquid crystal flow; Kinematic transport; Global attractor; Finite fractal dimension; APPROXIMATION; REGULARITY; EXISTENCE;
D O I
10.1007/s00033-011-0157-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a 2D system that models the nematic liquid crystal flow through the Navier-Stokes equations suitably coupled with a transport-reaction-diffusion equation for the averaged molecular orientations. This system has been proposed as a reasonable approximation of the well-known Ericksen-Leslie system. Taking advantage of previous well-posedness results and proving suitable dissipative estimates, here we show that the system endowed with periodic boundary conditions is a dissipative dynamical system with a smooth global attractor of finite fractal dimension.
引用
收藏
页码:979 / 992
页数:14
相关论文
共 50 条
[11]   The global well-posedness and global attractor for the solutions to the 2D Boussinesq system with variable viscosity and thermal diffusivity [J].
Huang, Aimin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 113 :401-429
[12]   Global Existence of Solutions to the 2D Incompressible Generalized Liquid Crystal Flow [J].
Zhu, Mingxuan .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[13]   Regularity of trajectory attractor and upper semicontinuity of global attractor for a 2D non-Newtonian fluid [J].
Zhao, Caidi ;
Li, Yongsheng ;
Zhou, Shengfan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (08) :2331-2363
[14]   Optimal Boundary Control of a Simplified Ericksen-Leslie System for Nematic Liquid Crystal Flows in 2D [J].
Cavaterra, Cecilia ;
Rocca, Elisabetta ;
Wu, Hao .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (03) :1037-1086
[15]   Finite-dimensional global attractor for a semi-discrete fractional nonlinear Schrodinger equation [J].
Calgaro, Caterina ;
Goubet, Olivier ;
Zahrouni, Ezzeddine .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (15) :5563-5574
[16]   The global attractor of the 2D Boussinesq system with fractional vertical dissipation [J].
Xing Su .
Boundary Value Problems, 2016
[17]   FINITE-DIMENSIONAL GLOBAL ATTRACTOR FOR THE THREE-DIMENSIONAL VISCOUS CAMASSA-HOLM EQUATIONS WITH FRACTIONAL DIFFUSION ON BOUNDED DOMAINS [J].
Tinh, Le tran .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (07) :2880-2902
[18]   GLOBAL FINITE ENERGY WEAK SOLUTIONS TO THE COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOW IN DIMENSION THREE [J].
Lin, Junyu ;
Lai, Baishun ;
Wang, Changyou .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (04) :2952-2983
[19]   On dimension of the global attractor for 2D quasi-geostrophic equations [J].
Wang, Ming ;
Tang, Yanbin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (04) :1887-1895
[20]   GLOBAL STRONG SOLUTIONS OF THE COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOW WITH THE CYLINDER SYMMETRY [J].
Tao, Qiang ;
Gao, Jincheng ;
Yao, Zheng-An .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (08) :2065-2096