Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow

被引:23
作者
Grasselli, M. [1 ]
Wu, H. [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Sch Math Sci, Shanghai 200433, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2011年 / 62卷 / 06期
关键词
Liquid crystal flow; Kinematic transport; Global attractor; Finite fractal dimension; APPROXIMATION; REGULARITY; EXISTENCE;
D O I
10.1007/s00033-011-0157-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a 2D system that models the nematic liquid crystal flow through the Navier-Stokes equations suitably coupled with a transport-reaction-diffusion equation for the averaged molecular orientations. This system has been proposed as a reasonable approximation of the well-known Ericksen-Leslie system. Taking advantage of previous well-posedness results and proving suitable dissipative estimates, here we show that the system endowed with periodic boundary conditions is a dissipative dynamical system with a smooth global attractor of finite fractal dimension.
引用
收藏
页码:979 / 992
页数:14
相关论文
共 28 条
[1]  
Bosia S, COMMUN PURE IN PRESS
[2]   Reproductivity for a nematic liquid crystal model [J].
Climent-Ezquerra, Blanca ;
Guillen-Gonzalez, Francisco ;
Rojas-Medar, Marko .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2006, 57 (06) :984-998
[3]   Regularity and time-periodicity for a nematic liquid crystal model [J].
Climent-Ezquerra, Blanca ;
Guillen-Gonzalez, Francisco ;
Jesus Moreno-Iraberte, M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) :539-549
[4]   Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals [J].
Coutand, D ;
Shkoller, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (10) :919-924
[5]  
de Gennes P. G., 1993, The Physics of Liquid Crystals, V2nd ed
[6]   LIQUID-CRYSTALS WITH VARIABLE DEGREE OF ORIENTATION [J].
ERICKSEN, JL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 113 (02) :97-120
[7]   CONSERVATION LAWS FOR LIQUID CRYSTALS [J].
ERICKSEN, JL .
TRANSACTIONS OF THE SOCIETY OF RHEOLOGY, 1961, 5 :23-34
[8]   REGULARITY CRITERIA FOR A SIMPLIFIED ERICKSEN-LESLIE SYSTEM MODELING THE FLOW OF LIQUID CRYSTALS [J].
Fan, Jishan ;
Ozawa, Tohru .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (03) :859-867
[9]   Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model [J].
Guillen-Gonzalez, F. ;
Rodriguez-Bellido, M. A. ;
Rojas-Medar, M. A. .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (06) :846-867
[10]   Global Solution to the Three-Dimensional Incompressible Flow of Liquid Crystals [J].
Hu, Xianpeng ;
Wang, Dehua .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 296 (03) :861-880