Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow

被引:22
作者
Grasselli, M. [1 ]
Wu, H. [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Sch Math Sci, Shanghai 200433, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2011年 / 62卷 / 06期
关键词
Liquid crystal flow; Kinematic transport; Global attractor; Finite fractal dimension; APPROXIMATION; REGULARITY; EXISTENCE;
D O I
10.1007/s00033-011-0157-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a 2D system that models the nematic liquid crystal flow through the Navier-Stokes equations suitably coupled with a transport-reaction-diffusion equation for the averaged molecular orientations. This system has been proposed as a reasonable approximation of the well-known Ericksen-Leslie system. Taking advantage of previous well-posedness results and proving suitable dissipative estimates, here we show that the system endowed with periodic boundary conditions is a dissipative dynamical system with a smooth global attractor of finite fractal dimension.
引用
收藏
页码:979 / 992
页数:14
相关论文
共 50 条