Selection of convolution kernel in non-uniform fast Fourier transform for Fourier domain optical coherence tomography

被引:12
作者
Chan, Kenny K. H. [1 ]
Tang, Shuo [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
来源
OPTICS EXPRESS | 2011年 / 19卷 / 27期
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
HIGH-SPEED; SWEPT-SOURCE; RECONSTRUCTION; INVERSION; OCT;
D O I
10.1364/OE.19.026891
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Gridding based non-uniform fast Fourier transform (NUFFT) has recently been shown as an efficient method of processing non-linearly sampled data from Fourier-domain optical coherence tomography (FD-OCT). This method requires selecting design parameters, such as kernel function type, oversampling ratio and kernel width, to balance between computational complexity and accuracy. The Kaiser-Bessel (KB) and Gaussian kernels have been used independently on the NUFFT algorithm for FD-OCT. This paper compares the reconstruction error and speed for the optimization of these design parameters and justifies particular kernel choice for FD-OCT applications. It is found that for on-the-fly computation of the kernel function, the simpler Gaussian function offers a better accuracy-speed tradeoff. The KB kernel, however, is a better choice in the pre-computed kernel mode of NUFFT, in which the processing speed is no longer dependent on the kernel function type. Finally, the algorithm is used to reconstruct in-vivo images of a human finger at a camera limited 50k A-line/s. (C)2011 Optical Society of America
引用
收藏
页码:26891 / 26904
页数:14
相关论文
共 28 条
[1]   Three-dimensional endomicroscopy using optical coherence tomography [J].
Adler, Desmond C. ;
Chen, Yu ;
Huber, Robert ;
Schmitt, Joseph ;
Connolly, James ;
Fujimoto, James G. .
NATURE PHOTONICS, 2007, 1 (12) :709-716
[2]   Rapid gridding reconstruction with a minimal oversampling ratio [J].
Beatty, PJ ;
Nishimura, DG ;
Pauly, JM .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (06) :799-808
[3]   High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform [J].
Chan, Kenny K. H. ;
Tang, Shuo .
BIOMEDICAL OPTICS EXPRESS, 2010, 1 (05) :1309-1319
[4]   Sensitivity advantage of swept source and Fourier domain optical coherence tomography [J].
Choma, MA ;
Sarunic, MV ;
Yang, CH ;
Izatt, JA .
OPTICS EXPRESS, 2003, 11 (18) :2183-2189
[5]   Nonuniform fast Fourier transform [J].
Duijndam, AJW ;
Schonewille, MA .
GEOPHYSICS, 1999, 64 (02) :539-551
[6]   FAST FOURIER-TRANSFORMS FOR NONEQUISPACED DATA [J].
DUTT, A ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (06) :1368-1393
[7]   K-space linear Fourier domain mode locked laser and applications for optical coherence tomography [J].
Eigenwillig, Christoph M. ;
Biedermann, Benjamin R. ;
Palte, Gesa ;
Huber, Robert .
OPTICS EXPRESS, 2008, 16 (12) :8916-8937
[8]   Nonuniform fast Fourier transforms using min-max interpolation [J].
Fessler, JA ;
Sutton, BP .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (02) :560-574
[9]   The design and implementation of FFTW3 [J].
Frigo, M ;
Johnson, SG .
PROCEEDINGS OF THE IEEE, 2005, 93 (02) :216-231
[10]   Accelerating the nonuniform fast Fourier transform [J].
Greengard, L ;
Lee, JY .
SIAM REVIEW, 2004, 46 (03) :443-454