Hydrogenated amorphous silicon germanium alloys grown by the hot-wire chemical vapor deposition technique

被引:23
作者
Nelson, BP [1 ]
Xu, YQ [1 ]
Williamson, DL [1 ]
Von Roedern, B [1 ]
Mason, A [1 ]
Heck, S [1 ]
Mahan, AH [1 ]
Schmitt, SE [1 ]
Gallagher, AC [1 ]
Webb, J [1 ]
Reedy, R [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
来源
AMORPHOUS AND MICROCRYSTALLINE SILICON TECHNOLOGY-1998 | 1998年 / 507卷
关键词
D O I
10.1557/PROC-507-447
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We successfully grow high-quality hydrogenated amorphous-silicon-germanium alloys (a-SiGe:H) by the hot-wire chemical-vapor deposition (HWCVD) technique using silane and germane gas mixtures. These alloys display electronic properties as good as those grown by the plasma-enhanced chemical-vapor deposition (PECVD) technique, when comparing materials with the same optical bandgaps. However, we grow materials with good electrical properties at high deposition rates-up to 40 Angstrom/s, compared to 1-4 Angstrom/s for PECVD materials. Our alloys exhibit similar trends with increasing Ge content to alloys grown by PECVD. The defect density, the dark conductivity, and the degree of nanostructural heterogeneity (as measured by small-angle X-ray scattering) all increase with increasing germanium content in the alloy. The nanostructural heterogeneity displays a sharp transition between 9 at.% and 14 at.% germanium. PECVD-grown a-SiGe:H alloys exhibit a similar transition at 20 at.% Ge. The photoconductivity and the ambipolar diffusion length of the alloys decrease with increasing germanium content. For a fixed silane-to-germane gas ratio, all material properties improve substantially when increasing substrate temperature (T-sub) from 220 degrees C to 375 degrees C. Increasing T-sub also narrows the optical bandgap and lowers the hydrogen content in the alloys for the same germane-to-silane gas ratio.
引用
收藏
页码:447 / 452
页数:6
相关论文
共 13 条
  • [1] ARYA RR, 1993, P 23 IEEE PHOT SPEC, P790
  • [2] AMORPHOUS SILICON SOLAR-CELL
    CARLSON, DE
    WRONSKI, CR
    [J]. APPLIED PHYSICS LETTERS, 1976, 28 (11) : 671 - 673
  • [3] THE FUTURE OF AMORPHOUS-SILICON PHOTOVOLTAIC TECHNOLOGY
    CRANDALL, R
    LUFT, W
    [J]. PROGRESS IN PHOTOVOLTAICS, 1995, 3 (05): : 315 - 332
  • [4] DENEUFVILLE JP, 1994, SEMICONDUCTOR FABTEC
  • [5] GUHA S, 1993, INT PVSEC, V7, P43
  • [6] MICROSTRUCTURAL TRANSITION AND DEGRADED OPTOELECTRONIC PROPERTIES IN AMORPHOUS SIGE-H ALLOYS
    JONES, SJ
    CHEN, Y
    WILLIAMSON, DL
    ZEDLITZ, R
    BAUER, G
    [J]. APPLIED PHYSICS LETTERS, 1993, 62 (25) : 3267 - 3269
  • [7] SUBSTRATE-TEMPERATURE DEPENDENCE OF THE OPTICAL AND ELECTRONIC-PROPERTIES OF GLOW-DISCHARGE PRODUCED A-GE-H
    LI, YM
    TURNER, WA
    LEE, C
    PAUL, W
    [J]. AMORPHOUS SILICON TECHNOLOGY - 1989, 1989, 149 : 187 - 192
  • [8] MAHAN AH, 1991, AIP CONF PROC, V234, P195, DOI 10.1063/1.41028
  • [9] DEPOSITION OF DEVICE QUALITY, LOW H CONTENT AMORPHOUS-SILICON
    MAHAN, AH
    CARAPELLA, J
    NELSON, BP
    CRANDALL, RS
    BALBERG, I
    [J]. JOURNAL OF APPLIED PHYSICS, 1991, 69 (09) : 6728 - 6730
  • [10] NAKAMUWA G, 1982, P 16 IEEE PHOT SPEC, P1331