L-functions for symplectic groups

被引:48
作者
Ginzburg, D
Rallis, S
Soudry, D
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 1998年 / 126卷 / 02期
关键词
L function; theta series; Eisenstein series; Whittaker model;
D O I
10.24033/bsmf.2325
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct global integrals of Shimura type, which represent the standard (partial) L-function L-S(pi x sigma,s), for pi x sigma, an irreducible, automorphic, cuspidal and generic representation of Sp(2n)(A) x GL(k)(A). We present two different constructions : one for the case n > k and one for the case n less than or equal to k. These constructions are, in a certain sense, dual to each other. We also study the (completely analogous) case where a is a representation of the metaplectic group (Sp) over tilde(2n)(A). Here we have to first fix a choice of a non-trivial additive character psi, in order to define the L-function L-psi(S)( pi x sigma,s). The integrals depend on a cusp form of pi, a theta series on (Sp) over tilde p(2n)(A) (l = min(n, k)) and an Eisenstein series on Sp(2k)(A) (Or (Sp) over tilde(2k)(A)) induced from sigma.
引用
收藏
页码:181 / 244
页数:64
相关论文
共 18 条
[1]   P-ADIC WHITTAKER FUNCTIONS ON THE METAPLECTIC GROUP [J].
BUMP, D ;
FRIEDBERG, S ;
HOFFSTEIN, J .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (02) :379-397
[2]   WHITTAKER-ORTHOGONAL MODELS, FUNCTORIALITY, AND THE RANKIN-SELBERG METHOD [J].
BUMP, D ;
FRIEDBERG, S ;
GINZBURG, D .
INVENTIONES MATHEMATICAE, 1992, 109 (01) :55-96
[3]  
CASSELMAN W, 1980, COMPOS MATH, V41, P207
[4]  
DIXMIER J, 1978, B SCI MATH, V102, P307
[5]  
GELBART S, 1998, PERSPECTIVES MATH, V6
[6]  
GELBART S, 1985, SPRINGER LECT NOTES, V1254
[7]   L-FUNCTIONS FOR SONXGLK [J].
GINZBURG, D .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1990, 405 :156-180
[8]  
Ginzburg D, 1997, J REINE ANGEW MATH, V487, P85
[9]  
GINZBURG D, 1997, IMRN, V7, P349
[10]  
GINZBURG D, 1997, IMRN, V14, P687