Maximum-likelihood estimation of quantum measurement -: art. no. 024102

被引:129
作者
Fiurásek, J [1 ]
机构
[1] Palacky Univ, Dept Opt, Olomouc 77207, Czech Republic
来源
PHYSICAL REVIEW A | 2001年 / 64卷 / 02期
关键词
D O I
10.1103/PhysRevA.64.024102
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Maximum-likelihood estimation is applied to the determination of an unknown quantum measurement. The calibrated measuring apparatus carries out measurements on many different quantum states and the positive operator-valued measure governing the measurement statistics is then inferred from the collected data via the maximum-likelihood principle. In contrast to the procedures based on linear inversion, our approach always provides a physically sensible result. We illustrate the method on the case of the Stem-Gerlach apparatus.
引用
收藏
页数:4
相关论文
共 17 条
[1]   Maximum-likelihood estimation of the density matrix [J].
Banaszek, K ;
D'Ariano, GM ;
Paris, MGA ;
Sacchi, MF .
PHYSICAL REVIEW A, 2000, 61 (01) :4
[2]  
Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609
[3]   Measuring quantum optical Hamiltonians [J].
D'Ariano, GM ;
Maccone, L .
PHYSICAL REVIEW LETTERS, 1998, 80 (25) :5465-5468
[4]  
D'Ariano GM, 2000, PHYS REV A, V62, DOI 10.1103/PhysRevA.62.023815
[5]  
Fiurásek J, 2001, PHYS REV A, V63, DOI 10.1103/PhysRevA.63.020101
[6]  
Helstrom C., 1976, QUANTUM DETECTION ES
[7]  
Holevo A. S, 1982, PROBABILISTIC STAT A
[8]   Quantum theory of incompatible observations [J].
Hradil, Z ;
Summhammer, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (42) :7607-7612
[9]   Quantum tomography as normalization of incompatible observations [J].
Hradil, Z ;
Summhammer, J ;
Rauch, H .
PHYSICS LETTERS A, 1999, 261 (1-2) :20-24
[10]   Quantum-state estimation [J].
Hradil, Z .
PHYSICAL REVIEW A, 1997, 55 (03) :R1561-R1564