Hyperbolic analogues of fullerenes on orientable surfaces

被引:4
作者
Sikiric, M. Dutour [2 ]
Knor, M. [1 ]
Potocnik, P. [3 ,4 ]
Siran, J. [1 ,5 ]
Skrekovski, R. [3 ,4 ]
机构
[1] Slovak Univ Technol Bratislava, Dept Math, Fac Civil Engn, Bratislava 81368, Slovakia
[2] Rudjer Boskovic Inst, Dept Marine & Environm Res, Zagreb 10000, Croatia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[4] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
[5] Open Univ, Milton Keynes MK7 6AA, Bucks, England
关键词
Fullerene; Polyhex; Orientable map; Cubic map; Polyhedral map; TOROIDAL POLYHEXES; CARBON; C-60; FORM;
D O I
10.1016/j.disc.2011.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Mathematical models of fullerenes are cubic spherical maps of type (5, 6), that is, with pentagonal and hexagonal faces only. Any such map necessarily contains exactly 12 pentagons, and it is known that for any integer alpha >= 0 except alpha = 1 there exists a fullerene map with precisely alpha hexagons. In this paper we consider hyperbolic analogues of fullerenes, modelled by cubic maps of face-type (6, k) for some k >= 7 on an orientable surface of genus at least 2. The number of k-gons in this case depends on the genus but the number of hexagons is again independent of the surface. We focus on the values of k that are 'universal' in the sense that there exist cubic maps of face-type (6, k) for all genera g >= 2. By Euler's formula, if k is universal, then k is an element of {7, 8, 9, 10, 12, 18}. We show that for any k is an element of {7, 8, 9, 12, 18} and any g >= 2 there exists a cubic map of face-type (6, k) with any prescribed number of hexagons. Fork = 7 and 8 we also prove the existence of polyhedral cubic maps of face-type (6, k) on surfaces of any prescribed genus g >= 2 and with any number of hexagons alpha, except for the cases k = 8, g = 2 and alpha <= 2, where we show that no such maps exist. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:729 / 736
页数:8
相关论文
共 23 条
  • [1] [Anonymous], 1989, INTRO THEORY BENZENO
  • [2] [Anonymous], 2000, DISCRETE MATH CHEM
  • [3] Brinkmann G, 1997, MATCH-COMMUN MATH CO, P233
  • [4] An Eberhard-Like Theorem for Pentagons and Heptagons
    DeVos, Matt
    Georgakopoulos, Agelos
    Mohar, Bojan
    Samal, Robert
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (04) : 931 - 945
  • [5] Dresselhaus M. S., 1996, SCI FULLERENES CARBO
  • [6] Fowler PW., 1995, An atlas of fullerenes
  • [7] POLYMORPHISM OF CARBON FORMS - POLYHEDRAL MORPHOLOGY AND ELECTRONIC-STRUCTURES
    FUJITA, M
    UMEDA, T
    YOSHIDA, M
    [J]. PHYSICAL REVIEW B, 1995, 51 (19): : 13778 - 13780
  • [8] Grunbaum B., 2002, CONVEX POLYTOPES, V2nd
  • [9] Harmuth T., THESIS BIELEFELD
  • [10] Heffter L., 1891, MATH ANN, V38, P477, DOI DOI 10.1007/BF01203357