Propagation of premixed hydrogen-air flame initiated by a planar ignition in a closed tube

被引:8
|
作者
Shen, Ting [1 ]
Li, Min [1 ]
Xiao, Huahua [1 ,2 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230027, Peoples R China
[2] Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Premixed flame; Distorted tulip flame; Hydrogen-air mixture; Ignition region; Numerical simulation; DETONATION; ACCELERATION; TRANSITION; EVOLUTION; SHAPE;
D O I
10.1016/j.ijhydene.2021.11.123
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Numerical simulations were used to study the dynamics of premixed flames propagating after planar ignition in a closed tube filled with stoichiometric hydrogen-air mixture. The two-dimensional fully compressible reactive Navier-Stokes equations coupled to a calibrated chemical-diffusive model were solved using a high-order numerical method and adaptive mesh refinement. The results show that the flame evolves from an initially planar flame to a double-cusped tulip flame, subsequently to a multi-cusped tulip flame, and finally to a series of distorted tulip flames (DTFs). The DTF forms one after another until the end of combustion. The initial flame lips of the double-cusped tulip flame are produced due to the stretching effect of nonuniform flow caused by the wall friction. The multi-cusped tulip flame forms as secondary cusps are created on the leading flame tips near the side-walls. The formation of DTFs here is thought to be closely connected to pressure waves generated in the flame propagation process. The first DTF is caused by the combined effects of the vortex motions and the Rayleigh-Taylor (RT) instability driven by pressure waves, while the subsequent DTFs form due to reverse flows and RT instability. Nevertheless, both the vortex motions and reverse flows are essentially induced by the interactions between pressure waves and flow fields. Furthermore, the numerical results were compared to that in the case with a semicircular ignition. It was found that although there are significant differences in the early flame acceleration and tulip formation stages between the two differently shaped ignitions, the dynamics of DTFs are substantially consistent. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4903 / 4915
页数:13
相关论文
共 50 条
  • [41] Local flame structure in hydrogen-air turbulent premixed flames
    Tanahashi, M
    Ito, Y
    Fujimura, M
    Miyauchi, T
    IUTAM SYMPOSIUM ON TURBULENT MIXING AND COMBUSTION, 2002, 70 : 269 - 277
  • [42] Investigation of dominant parameters for flame structure of hydrogen-air premixed flame with curvature
    Arai, Yasushi
    Hayashi, Naoki
    Yamashita, Hiroshi
    Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2013, 79 (807): : 2486 - 2496
  • [43] Experimental study on premixed flame propagation of hydrogen/methane/air deflagration in closed ducts
    Zheng, Kai
    Yu, Minggao
    Zheng, Ligang
    Wen, Xiaoping
    Chu, Tingxiang
    Wang, Liang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (08) : 5426 - 5438
  • [44] Large eddy simulation of premixed hydrogen/methane/air flame propagation in a closed duct
    Zheng, Kai
    Yu, Minggao
    Liang, Yunpei
    Zheng, Ligang
    Wen, Xiaoping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (07) : 3871 - 3884
  • [45] Numerical simulation of laminar premixed hydrogen-air flame/shock interaction in semi-closed channel
    Yhuel, Emilie
    Ribert, Guillaume
    Domingo, Pascale
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2023, 39 (03) : 3021 - 3029
  • [46] Effect of concentration and ignition position on characteristics of premixed hydrogen-air deflagration
    Zheng L.
    Zhu X.
    Yu S.
    Wang Y.
    Li G.
    Du D.
    Dou Z.
    Su Y.
    Huagong Xuebao/CIESC Journal, 2019, 70 (01): : 408 - 416
  • [47] Laminar flame propagation and ignition properties of premixed iso-octane/air with hydrogen addition
    Li, Zisen
    Han, Wang
    Liu, Dong
    Chen, Zheng
    FUEL, 2015, 158 : 443 - 450
  • [48] Effect of ignition locations on vented explosion of premixed hydrogen-air mixtures
    Cao Y.
    Guo J.
    Hu K.
    Shao K.
    Yang F.
    Baozha Yu Chongji/Explosion and Shock Waves, 2016, 36 (06): : 847 - 852
  • [49] Ignition delay in hydrogen-air and syngas-air mixtures: Experimental data interpretation via flame propagation
    Medvedev, Sergey P.
    Agafonov, Gennady L.
    Khomik, Sergey V.
    Gelfand, Boris E.
    COMBUSTION AND FLAME, 2010, 157 (07) : 1436 - 1438
  • [50] Hydrogen-air turbulent flame propagation in the presence of microdroplets
    Medvedev, S. P.
    Khomik, S. V.
    Maximova, O. G.
    Agafonov, G. L.
    Mikhalkin, V. N.
    Betev, A. S.
    XXXI INTERNATIONAL CONFERENCE ON EQUATIONS OF STATE FOR MATTER (ELBRUS 2016), 2016, 774