Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity

被引:779
作者
Meng, Bo [1 ,2 ]
Abdullahi, Adam [1 ,2 ]
Ferreira, Isabella A. T. M. [1 ,2 ]
Goonawardane, Niluka [1 ,2 ]
Saito, Akatsuki [3 ]
Kimura, Izumi [4 ]
Yamasoba, Daichi [4 ]
Gerber, Pehuen Pereyra [1 ,2 ]
Fatihi, Saman [5 ]
Rathore, Surabhi [5 ]
Zepeda, Samantha K. [6 ]
Papa, Guido [7 ]
Kemp, Steven A. [1 ,2 ]
Ikeda, Terumasa [8 ]
Toyoda, Mako [9 ]
Tan, Toong Seng [9 ]
Kuramochi, Jin [10 ]
Mitsunaga, Shigeki [11 ]
Ueno, Takamasa [9 ]
Shirakawa, Kotaro [12 ]
Takaori-Kondo, Akifumi [12 ]
Brevini, Teresa [2 ]
Mallery, Donna L. [7 ]
Charles, Oscar J. [13 ]
Bowen, John E. [6 ]
Joshi, Anshu [6 ]
Walls, Alexandra C. [6 ,14 ]
Jackson, Laurelle [15 ]
Martin, Darren [16 ]
Smith, Kenneth G. C. [1 ,2 ]
Bradley, John [2 ]
Briggs, John A. G. [17 ]
Choi, Jinwook [18 ]
Madissoon, Elo [19 ,20 ]
Meyer, Kerstin B. [19 ]
Mlcochova, Petra [1 ,2 ]
Ceron-Gutierrez, Lourdes [21 ]
Doffinger, Rainer [21 ]
Teichmann, Sarah A. [19 ,22 ]
Fisher, Andrew J. [23 ]
Pizzuto, Matteo S. [24 ]
de Marco, Anna [24 ]
Corti, Davide [24 ]
Hosmillo, Myra [14 ]
Lee, Joo Hyeon [18 ,25 ]
James, Leo C. [7 ]
Thukral, Lipi [5 ]
Veesler, David [6 ,26 ]
Sigal, Alex [15 ,27 ,28 ]
Sampaziotis, Fotios [1 ,2 ,18 ,21 ]
机构
[1] Cambridge Inst Therapeut Immunol & Infect Dis CIT, Cambridge, England
[2] Univ Cambridge, Dept Med, Cambridge, England
[3] Univ Miyazaki, Fac Agr, Dept Vet Sci, Miyazaki, Japan
[4] Univ Tokyo, Int Res Ctr Infect Dis, Inst Med Sci, Dept Infect Dis Control,Div Syst Virol, Tokyo, Japan
[5] CSIR Inst Genom & Integrat Biol, Delhi, India
[6] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[7] MRC Lab Mol Biol, Cambridge, England
[8] Kumamoto Univ, Joint Res Ctr Human Retrovirus Infect, Div Mol Virol & Genet, Kumamoto, Japan
[9] Kumamoto Univ, Joint Res Ctr Human Retrovirus Infect, Div Infect & Immun, Kumamoto, Japan
[10] Kuramochi Clin Interpk, Utsunomiya, Tochigi, Japan
[11] Natl Inst Genet, Human Genet Lab, Mishima, Shizuoka, Japan
[12] Kyoto Univ, Grad Sch Med, Dept Hematol & Oncol, Kyoto, Japan
[13] UCL, Div Infect & Immun, London, England
[14] Univ Cambridge, Dept Virol, Cambridge, England
[15] Africa Hlth Res Inst, Durban, South Africa
[16] Univ Cape Town, Cape Town, South Africa
[17] Max Planck Inst Biochem, Martinsried, Germany
[18] Wellcome MRC Cambridge Stem Cell Inst, Cambridge, England
[19] Welcome Sanger Inst, Wellcome Trust Genome Campus, Hinxton, England
[20] EMBL EBI, European Mol Biol Lab, European Bioinformat Inst, Wellcome Trust Genome Campus, Hinxton, England
[21] Cambridge Univ Hosp NHS Fdn Trust, Addenbrookes Hosp, Cambridge Biomed Campus, Cambridge, England
[22] Univ Cambridge, Dept Phys, Cavendish Lab, Cambridge, England
[23] Newcastle Univ, Fac Med Sci, Translat & Clin Res Inst, Transplant & Regenerat Med Lab, Newcastle Upon Tyne, Tyne & Wear, England
[24] Humabs Biomed SA, Bellinzona, Switzerland
[25] Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge, England
[26] Howard Hughes Med Inst, Seattle, WA USA
[27] Max Planck Inst Infect Biol, Berlin, Germany
[28] Univ KwaZulu Natal, Sch Lab Med & Med Sci, Durban, South Africa
[29] NHS Blood & Transplant, Cambridge, England
[30] Japan Sci & Technol Agcy, CREST, Saitama, Japan
基金
英国工程与自然科学研究理事会; 英国惠康基金; 美国国家卫生研究院;
关键词
ACE2; VISUALIZATION; PERFORMANCE; ALIGNMENT; RECEPTOR; L452R;
D O I
10.1038/s41586-022-04474-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The SARS-CoV-2 Omicron BA.1 variant emerged in 2021(1) and has multiple mutations in its spike protein(2). Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways(3) demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.
引用
收藏
页码:706 / +
页数:30
相关论文
共 53 条
[1]   SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies [J].
Barnes, Christopher O. ;
Jette, Claudia A. ;
Abernathy, Morgan E. ;
Dam, Kim-Marie A. ;
Esswein, Shannon R. ;
Gristick, Harry B. ;
Malyutin, Andrey G. ;
Sharaf, Naima G. ;
Huey-Tubman, Kathryn E. ;
Lee, Yu E. ;
Robbiani, Davide F. ;
Nussenzweig, Michel C. ;
West, Anthony P., Jr. ;
Bjorkman, Pamela J. .
NATURE, 2020, 588 (7839) :682-+
[2]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[3]   Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia [J].
Braga, Luca ;
Ali, Hashim ;
Secco, Ilaria ;
Chiavacci, Elena ;
Neves, Guilherme ;
Goldhill, Daniel ;
Penn, Rebecca ;
Jimenez-Guardeno, Jose M. ;
Ortega-Prieto, Ana M. ;
Bussani, Rossana ;
Cannata, Antonio ;
Rizzari, Giorgia ;
Collesi, Chiara ;
Schneider, Edoardo ;
Arosio, Daniele ;
Shah, Ajay M. ;
Barclay, Wendy S. ;
Malim, Michael H. ;
Burrone, Juan ;
Giacca, Mauro .
NATURE, 2021, 594 (7861) :88-+
[4]  
Brevini, 2021, FXR INHIBITION REDUC, DOI 10.1101/2021.06.06.446781
[5]   Syncytia formation by SARS-CoV-2-infected cells (vol 39, e106267, 2020) [J].
Buchrieser, Julian ;
Dufloo, Jeremy ;
Hubert, Mathieu ;
Monel, Blandine ;
Planas, Delphine ;
Rajah, Maaran Michael ;
Planchais, Cyril ;
Porrot, Francoise ;
Guivel-Benhassine, Florence ;
Van der Werf, Sylvie ;
Casartelli, Nicoletta ;
Mouquet, Hugo ;
Bruel, Timothee ;
Schwartz, Olivier .
EMBO JOURNAL, 2021, 40 (03)
[6]   Type II Transmembrane Serine Proteases [J].
Bugge, Thomas H. ;
Antalis, Toni M. ;
Wu, Qingyu .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (35) :23177-23181
[7]   Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology [J].
Bussani, Rossana ;
Schneider, Edoardo ;
Zentilin, Lorena ;
Collesi, Chiara ;
Ali, Hashim ;
Braga, Luca ;
Volpe, Maria Concetta ;
Colliva, Andrea ;
Zanconati, Fabrizio ;
Berlot, Giorgio ;
Silvestri, Furio ;
Zacchigna, Serena ;
Giacca, Mauro .
EBIOMEDICINE, 2020, 61
[8]   Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein [J].
Cabantous, S ;
Terwilliger, TC ;
Waldo, GS .
NATURE BIOTECHNOLOGY, 2005, 23 (01) :102-107
[9]  
Cameroni E., Nature
[10]  
Cathcart A. L., DUAL FUNCTION MONOCL, DOI [10.1101/2021.03.09.434607 (2021, 10.1101/2021.03.09.434607(2021]