AN IN VITRO CELL POPULATION DYNAMICS MODEL INCORPORATING CELL SIZE, QUIESCENCE, AND CONTACT INHIBITION

被引:21
作者
Ducrot, Arnaud [1 ]
Le Foll, Frank [2 ]
Magal, Pierre [1 ]
Murakawa, Hideki [3 ]
Pasquier, Jennifer [2 ]
Webb, Glenn F. [4 ]
机构
[1] Univ Bordeaux 2, Inst Math Bordeaux, CNRS, UMR 5251, F-33000 Bordeaux, France
[2] Univ Havre, Lab Ecotoxicol, UPRES EA 3222, IFRMP 23, F-76058 Le Havre, France
[3] Toyama Univ, Grad Sch Sci & Engn Res, Toyama 9308555, Japan
[4] Vanderbilt Univ, Dept Math, Stevenson Ctr, Nashville, TN 37240 USA
关键词
Cell population dynamics; spatial motion; cell cycle; contact inhibition; cell colonies; WAVE-FRONT PROPAGATION; STRUCTURED POPULATION; MATHEMATICAL-MODEL; TUMOR-GROWTH; CANCER; EQUATION; ADHESION; INVASION; COMPETITION; STABILITY;
D O I
10.1142/S0218202511005404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct a model to describe the spatial motion of a monolayer of cells occupying a two-dimensional dish. By taking care of nonlocal contact inhibition, quiescence phenomenon, and the cell cycle, we derive porous media-like equation with nonlocal reaction terms. The first part of this paper is devoted to the construction of the model. In the second part we study the well-posedness of the model. We conclude the paper by presenting some numerical simulations of the model and we observe the formation of colonies.
引用
收藏
页码:871 / 892
页数:22
相关论文
共 56 条
[1]   A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells [J].
Alarcón, T ;
Byrne, HM ;
Maini, PK .
JOURNAL OF THEORETICAL BIOLOGY, 2004, 229 (03) :395-411
[2]   A history of the study of solid tumour growth: The contribution of mathematical modelling [J].
Araujo, RP ;
McElwain, DLS .
BULLETIN OF MATHEMATICAL BIOLOGY, 2004, 66 (05) :1039-1091
[3]   A continuum approach to modelling cell-cell adhesion [J].
Armstrong, Nicola J. ;
Painter, Kevin J. ;
Sherratt, Jonathan A. .
JOURNAL OF THEORETICAL BIOLOGY, 2006, 243 (01) :98-113
[4]   Adding Adhesion to a Chemical Signaling Model for Somite Formation [J].
Armstrong, Nicola J. ;
Painter, Kevin J. ;
Sherratt, Jonathan A. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2009, 71 (01) :1-24
[5]   On the foundations of cancer modelling: Selected topics, speculations, and perspectives [J].
Bellomo, N. ;
Li, N. K. ;
Maini, P. K. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (04) :593-646
[6]   From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells [J].
Bellomo, N. ;
Delitala, M. .
PHYSICS OF LIFE REVIEWS, 2008, 5 (04) :183-206
[7]  
Bellouquid A., 2006, MATH MODELING COMPLE
[8]  
BERGER AE, 1979, RAIRO-ANAL NUMER-NUM, V13, P297
[9]   A free boundary problem arising in a simplified tumour growth model of contact inhibition [J].
Bertsch, M. ;
Dal Passo, R. ;
Mimura, M. .
INTERFACES AND FREE BOUNDARIES, 2010, 12 (02) :235-250
[10]   Modelling aspects of cancer dynamics: a review [J].
Byrne, H. M. ;
Alarcon, T. ;
Owen, M. R. ;
Webb, S. D. ;
Maini, P. K. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1843) :1563-1578