Comparison study of slag corrosion resistance of MgO-MgAl2O4, MgO-CaO and MgO-C refractories under electromagnetic field

被引:72
|
作者
Ren, Xin-ming [1 ]
Ma, Bei-yue [1 ,2 ]
Li, Shi-ming [1 ]
Li, Hong-xia [2 ]
Liu, Guo-qi [2 ]
Yang, Wen-gang [2 ]
Qian, Fan [2 ]
Zhao, Shi-xian [2 ]
Yu, Jing-kun [1 ]
机构
[1] Northeastern Univ, Sch Met, Minist Educ, Key Lab Ecol Met Multimetall Mineral, Shenyang 110819, Liaoning, Peoples R China
[2] Sinosteel Luoyang Inst Refractories Res Co Ltd, State Key Lab Adv Refractories, Luoyang 471039, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
MgO-based refractory; Corrosion; Basic slag; Electromagnetic field; THERMAL-SHOCK BEHAVIOR; LIQUID; IRON; COMPOSITE; MECHANISM; OXIDE;
D O I
10.1007/s42243-020-00421-0
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
To illuminate the corrosion behavior of MgO-based refractories under electromagnetic field (EMF), herein, the slag corrosion and penetration resistance of MgO-MgAl2O4, MgO-CaO, and MgO-C refractories were investigated using the rotary immersion slag resistance test at 1873 K for 1 h. The results showed that the order of the good slag resistance of as-tested refractories was MgO-C > MgO-CaO > MgO-MgAl2O4. The EMF accelerated the corrosion and penetration of slag to the refractories, which caused the molten slag to be easier into the refractories by natural convection and Marangoni effect. In addition, the MgO-C refractories did not show an overwhelming advantage in slag resistance because EMF impeded the formation of the dense protection layer. Consequently, in view of the present results, the MgO-C refractories are still the most promising slag line material for refining furnace among MgO-MgAl2O4, MgO-CaO, and MgO-C refractories.
引用
收藏
页码:38 / 45
页数:8
相关论文
共 50 条
  • [1] Comparison study of slag corrosion resistance of MgO–MgAl2O4, MgO–CaO and MgO–C refractories under electromagnetic field
    Xin-ming Ren
    Bei-yue Ma
    Shi-ming Li
    Hong-xia Li
    Guo-qi Liu
    Wen-gang Yang
    Fan Qian
    Shi-xian Zhao
    Jing-kun Yu
    Journal of Iron and Steel Research International, 2021, 28 : 38 - 45
  • [2] Effect of electromagnetic field on the slag resistance of MgO-C refractories
    Li, X. C.
    Wang, T. X.
    Zhu, B. Q.
    3RD INTERNATIONAL CONGRESS ON CERAMICS (ICC3): INNOVATION IN REFRACTORIES AND TRADITIONAL CERAMICS, 2011, 18
  • [3] Corrosion Resistance Mechanism of MgO-CaO Refractories to Refining Slag
    YU Yanping
    YU Yanwen
    China's Refractories, 2014, 23 (02) : 35 - 38
  • [4] Study on Corrosion Mechanism Between MgO-CaO Refractories and Slag
    YU Yanwen and WANG NingBaoshan Iron & Steel Co. Ltd.
    China'sRefractories, 2006, (04) : 25 - 28
  • [5] Effect of electromagnetic field on slag corrosion resistance of low carbon MgO-C refractories
    Li, Xiangcheng
    Zhu, Boquan
    Wang, Tangxi
    CERAMICS INTERNATIONAL, 2012, 38 (03) : 2105 - 2109
  • [6] Synthesis of MgO-MgAl2O4 refractory aggregates for application in MgO-C slide plate
    Gu, Qiang
    Liu, Guoqi
    Li, Hongxia
    Jia, Quanli
    Zhao, Fei
    Liu, Xinhong
    CERAMICS INTERNATIONAL, 2019, 45 (18) : 24768 - 24776
  • [7] Corrosion of MgO-C refractories by vanadium slag with high MgO content
    Li, Jie
    Diao, Jiang
    Lai, Zhiqiu
    Hu, Ruixin
    Tan, Wenfeng
    Chen, Lian
    Li, Hongyi
    Xie, Bing
    CERAMICS INTERNATIONAL, 2024, 50 (17) : 31147 - 31153
  • [8] The comparison of mechanical behavior of MgO-MgAl2O4 with MgO-ZrO2 and MgO-MgAl2O4-ZrSiO4 composite refractories
    Ceylantekin, Rasim
    Aksel, Cemail
    CERAMICS INTERNATIONAL, 2012, 38 (02) : 1409 - 1416
  • [9] A comparative study on the slag resistance of MgO-C, low-carbon MgO-C, and MgO-SiC-C refractories
    Qi, Xin
    Luo, Xudong
    Gu, Huazhi
    Cao, Lei
    Tao, Ying
    Hou, Qingdong
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2024, 21 (06) : 4380 - 4392
  • [10] Effects of CaO and Al2O3 added to MgO-C refractories on MgO-C reaction
    Zhang, SW
    Yamaguchi, A
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 1996, 104 (02) : 84 - 88