The effect of OMMT reinforcement and annealing treatment on mechanical and thermal properties of Polyurethane Copolymer nanocomposites

被引:4
作者
Albozahid, Muayad [1 ]
Naji, Haneen [2 ]
Alobad, Zoalfokkar [3 ]
Saiani, Alberto [4 ]
机构
[1] Univ Kufa, Fac Engn, Dept Mat Engn, Al Najaf 54001, Kufa, Iraq
[2] Univ Babylon, Fac Engn, Dept Chem Engn, Babil, Iraq
[3] Univ Babylon, Fac Mat Engn, Dept Polymers Engn & Petrochem Ind, Babil, Iraq
[4] Univ Manchester, Sch Nat Sci, Dept Mat, Manchester, Lancs, England
关键词
Polyurethane copolymer; PUC; nanoclay; OMMT; nanocomposites; mechanical properties; dynamic mechanical thermal properties; THERMOPLASTIC POLYURETHANE; MICROPHASE SEPARATION; PHASE-SEPARATION; CLAY NANOCOMPOSITES; CHEMICAL-STRUCTURES; SOFT SEGMENTS; MORPHOLOGY; NANOCLAY; BEHAVIOR; FILLER;
D O I
10.1177/00952443211058843
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study focuses on a new fabrication of nanocomposite based on Polyurethane Copolymer (PUC) intercalated with organo-modified montmorillonite nanoparticles (OMMT), via an efficient combination of solution mixing and melt blending processes. The combination of solution mixing and melt interaction processes produced PUC/OMMT nanocomposites with enhanced properties. The OMMT filled PUC was characterised by TEM and tensile test. The effect of thermal treatment process was also studied due to subsequent microphase separation of PUC resulting from microdomain miscibility. TEM observation recognised a decent dispersion state of OMMT within PUC, owing to their exfoliated and intercalated structure. This morphology was greatly influenced by induced thermal treatment. The dynamic mechanical thermal analysis (DMTA) revealed that storage modulus and glass transition temperature of the nanocomposites increased with OMMT incorporation. The tensile modulus and tensile strength of nanocomposites showed an improvement with the addition of OMMT.
引用
收藏
页码:477 / 493
页数:17
相关论文
共 70 条
[51]   An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide [J].
Nguyen, Quang T. ;
Baird, Donald G. .
POLYMER, 2007, 48 (23) :6923-6933
[52]   New approach to evaluate microphase separation in segmented polyurethanes containing carbonate macrodiol [J].
Niemczyk, Agata ;
Piegat, Agnieszka ;
Olalla, Agueda Sonseca ;
El Fray, Miroslawa .
EUROPEAN POLYMER JOURNAL, 2017, 93 :182-191
[53]  
Olagoke Olabisi, 2016, HDB THERMOPLASTICS O
[54]   Structure-Property Relationships in Biomedical Thermoplastic Polyurethane Nanocomposites [J].
Osman, Azlin F. ;
Edwards, Grant A. ;
Schiller, Tara L. ;
Andriani, Yosephine ;
Jack, Kevin S. ;
Morrow, Isabel C. ;
Halley, Peter J. ;
Martin, Darren J. .
MACROMOLECULES, 2012, 45 (01) :198-210
[55]   Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties [J].
Pattanayak, A ;
Jana, SC .
POLYMER, 2005, 46 (14) :5183-5193
[56]   Polymer nanotechnology: Nanocomposites [J].
Paul, D. R. ;
Robeson, L. M. .
POLYMER, 2008, 49 (15) :3187-3204
[57]   Graphene-based polymer nanocomposites [J].
Potts, Jeffrey R. ;
Dreyer, Daniel R. ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
POLYMER, 2011, 52 (01) :5-25
[58]  
Prisacariu C, 2011, POLYURETHANE ELASTOMERS: FROM MORPHOLOGY TO MECHANICAL ASPECTS, P1, DOI 10.1007/978-3-7091-0514-6
[59]   TPU/graphene nanocomposites: Effect of graphene functionality on the morphology of separated hard domains in thermoplastic polyurethane [J].
Razeghi, Mohammadali ;
Pircheraghi, Gholamreza .
POLYMER, 2018, 148 :169-180
[60]   Origin of multiple melting endotherms in a high hard block content polyurethane. 2. Structural investigation [J].
Saiani, A ;
Rochas, C ;
Eeckhaut, G ;
Daunch, WA ;
Leenslag, JW ;
Higgins, JS .
MACROMOLECULES, 2004, 37 (04) :1411-1421