Sharp Cu@Sn nanocones on Cu foam for highly selective and efficient electrochemical reduction of CO2 to formate

被引:73
作者
Chen, Chengzhen [1 ]
Pang, Yuanjie [2 ]
Zhang, Fanghua [1 ]
Zhong, Juhua [3 ]
Zhang, Bo [4 ]
Cheng, Zhenmin [1 ]
机构
[1] East China Univ Sci & Technol, Sch Chem Engn, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China
[3] East China Univ Sci & Technol, Dept Phys, Shanghai 200237, Peoples R China
[4] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200438, Peoples R China
关键词
CARBON-DIOXIDE REDUCTION; FORMIC-ACID; AQUEOUS CO2; HIGH-DENSITY; ELECTROREDUCTION; CATALYSTS; ELECTRODES; NANOPARTICLES; ELECTROCATALYST; CONVERSION;
D O I
10.1039/c8ta06826g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical reduction of aqueous CO2 into formate is subject to poor selectivity and low current density with conventional Sn-based catalysts owing to the inert nature of CO2 molecules and the low number of active sites. Recently, it has been demonstrated that alkali metal cations could greatly enhance selectivity for CO2 reduction by stabilizing the key intermediates, which leads to an effective solution to this problem by concentrating local metal cations through tailoring the catalyst structure. Herein, we synthesized spiky Cu@Sn nanocones over a macroporous Cu foam, which has a curvature radius of 10nm, via facile electrochemical coating of a thin layer of Sn over the Cu nanoconic surface. A faradaic efficiency of 90.4% toward formate production was achieved, with a current density of 57.7 mA cm(-2) at -1.1 V vs. a reversible hydrogen electrode, which far exceeds results achieved to date with state-of-the-art Sn catalysts. The performance should be attributed to the combined effects of a sharp conical feature that facilitates the enrichment of surface-adsorbed metal cations and the promotion of the mass transfer and active sites growth favored by the three-dimensional porous network.
引用
收藏
页码:19621 / 19630
页数:10
相关论文
共 50 条
  • [31] Nanostructure engineering of Cu electrocatalyst for the selective C2+hydrocarbons in electrochemical CO2 reduction
    Kanase, Rohini Subhash
    Lee, Kelvin Berm
    Arunachalam, Maheswari
    Sivasankaran, Ramesh Poonchi
    Oh, Jihun
    Kang, Soon Hyung
    APPLIED SURFACE SCIENCE, 2022, 584
  • [32] Facile fabrication of Sn/SnOx electrode as an efficient electrocatalyst for CO2 reduction to formate
    Rende, Kumru
    Kayan, Didem Balun
    Arslan, Leyla colakerol
    Ergenekon, Pinar
    MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [33] Highly dispersive trace silver decorated Cu/Cu2O composites boosting electrochemical CO2 reduction to ethanol
    Su, Wanyu
    Ma, Lushan
    Cheng, Qingqing
    Wen, Ke
    Wang, Pengfei
    Hu, Weibo
    Zou, Liangliang
    Fang, Jianhui
    Yang, Hui
    JOURNAL OF CO2 UTILIZATION, 2021, 52
  • [34] Modulated Sn Oxidation States over a Cu2O-Derived Substrate for Selective Electrochemical CO2 Reduction
    Li, Mengran
    Tian, Xiaohe
    Garg, Sahil
    Rufford, Thomas E.
    Zhao, Peiyao
    Wu, Yuming
    Yago, Anya Josefa
    Ge, Lei
    Rudolph, Victor
    Wang, Geoff
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (20) : 22760 - 22770
  • [35] Cu-Sn Aerogels for Electrochemical CO2 Reduction with High CO Selectivity
    Pan, Yexin
    Wu, Muchen
    Ye, Ziran
    Tang, Haibin
    Hong, Zhanglian
    Zhi, Mingjia
    MOLECULES, 2023, 28 (03):
  • [36] Electrodeposited Cu-Sn Alloy for Electrochemical CO2 Reduction to CO/HCOO−
    Masayuki Morimoto
    Yoshiyuki Takatsuji
    Ryota Yamasaki
    Hikaru Hashimoto
    Ikumi Nakata
    Tatsuya Sakakura
    Tetsuya Haruyama
    Electrocatalysis, 2018, 9 : 323 - 332
  • [37] Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate
    Zheng, Xueli
    De Luna, Phil
    de Arquer, F. Pelayo Garcia
    Zhang, Bo
    Becknell, Nigel
    Ross, Michael B.
    Li, Yifan
    Banis, Mohammad Norouzi
    Li, Yuzhang
    Liu, Min
    Voznyy, Oleksandr
    Cao Thang Dinh
    Zhuang, Taotao
    Stadler, Philipp
    Cui, Yi
    Du, Xiwen
    Yang, Peidong
    Sargent, Edward H.
    JOULE, 2017, 1 (04) : 794 - 805
  • [38] In Situ Bismuth Nanosheet Assembly for Highly Selective Electrocatalytic CO2 Reduction to Formate
    Peng, Chan-Juan
    Wu, Xin-Tao
    Zeng, Guang
    Zhu, Qi-Long
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (12) : 1539 - 1544
  • [39] A highly selective tin-copper bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to formate
    Jiang, Xingxing
    Wang, Xikui
    Liu, Zhenjie
    Wang, Qinglong
    Xiao, Xin
    Pan, Haiping
    Li, Man
    Wang, Jiawei
    Shao, Yong
    Peng, Zhangquan
    Shen, Yan
    Wang, Mingkui
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 259
  • [40] Reactivity Determinants in Electrodeposited Cu Foams for Electrochemical CO2 Reduction
    Klingan, Katharina
    Kottakkat, Tintula
    Jovanov, Zarko P.
    Jiang, Shan
    Pasquini, Chiara
    Scholten, Fabian
    Kubella, Paul
    Bergmann, Arno
    Roldan Cuenya, Beatriz
    Roth, Christina
    Dau, Holger
    CHEMSUSCHEM, 2018, 11 (19) : 3449 - 3459