Offline and online identification of hidden semi-Markov models

被引:21
|
作者
Azimi, M [1 ]
Nasiopoulos, P [1 ]
Ward, RK [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6K 1Z4, Canada
关键词
expectation maximization (EM) algorithm; recursive maximum likelihood (RML); recursive prediction error (RPE); semi-Markov models;
D O I
10.1109/TSP.2005.850344
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identification algorithms. Then, we present a variant of the EM algorithm and an adaptive algorithm for parameter identification of HSMMs in the offline and online cases, respectively.
引用
收藏
页码:2658 / 2663
页数:6
相关论文
共 50 条
  • [1] Online identification of Hidden Semi-Markov Models
    Azimi, M
    Nasiopoulos, P
    Ward, RK
    ISPA 2003: PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, PTS 1 AND 2, 2003, : 991 - 996
  • [2] Hidden semi-Markov models
    Yu, Shun-Zheng
    ARTIFICIAL INTELLIGENCE, 2010, 174 (02) : 215 - 243
  • [3] Feature Selection for Hidden Markov Models and Hidden Semi-Markov Models
    Adams, Stephen
    Beling, Peter A.
    Cogill, Randy
    IEEE ACCESS, 2016, 4 : 1642 - 1657
  • [4] Using Hidden Semi-Markov Models for effective online failure prediction
    Salfner, Felix
    Malek, Miroslaw
    SRDS 2007: 26TH IEEE INTERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS, PROCEEDINGS, 2007, : 161 - +
  • [5] Online apnea–bradycardia detection based on hidden semi-Markov models
    Miguel Altuve
    Guy Carrault
    Alain Beuchée
    Patrick Pladys
    Alfredo I. Hernández
    Medical & Biological Engineering & Computing, 2015, 53 : 1 - 13
  • [6] Bayesian nonparametric Hidden semi-Markov models
    Johnson, Matthew J.
    Willsky, Alan S.
    Journal of Machine Learning Research, 2013, 14 (01) : 673 - 701
  • [7] Hidden Semi-Markov Models for Predictive Maintenance
    Cartella, Francesco
    Lemeire, Jan
    Dimiccoli, Luca
    Sahli, Hichem
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [8] Bayesian Nonparametric Hidden Semi-Markov Models
    Johnson, Matthew J.
    Willsky, Alan S.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 673 - 701
  • [9] Online apnea-bradycardia detection based on hidden semi-Markov models
    Altuve, Miguel
    Carrault, Guy
    Beuchee, Alain
    Pladys, Patrick
    Hernandez, Alfredo I.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2015, 53 (01) : 1 - 13
  • [10] Weibull Partition Models with Applications to Hidden Semi-Markov Models
    Lu, Youwei
    Okada, Shogo
    Nitta, Katsumi
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 162 - 169