Scaling theory of entanglement entropy in confinements near quantum critical points

被引:11
作者
Cao, Xuanmin [1 ]
Hu, Qijun [1 ]
Zhong, Fan [1 ]
机构
[1] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Sch Phys, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
MATRIX RENORMALIZATION-GROUP; PHASE-TRANSITION; DYNAMICS; RELAXATION; STATES;
D O I
10.1103/PhysRevB.98.245124
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a unified scaling theory of entanglement entropy in the confinements of finite bond dimensions, dynamics, and system sizes. In the theory, the recently introduced finite-entanglement scaling is generalized to the dynamics subjected to a linear driving along with a finite system size. Competition among the three scales as well as the correlation length of the system is analyzed in detail. Interesting regimes and their complicated crossovers together with their characteristics follow naturally. The theory is verified by time-evolving-block-decimation-based numerical simulations in the one-dimensional transverse-field Ising model under a linear driving.
引用
收藏
页数:11
相关论文
共 68 条
[1]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[2]   Density-matrix renormalization group for a gapless system of free fermions [J].
Andersson, M ;
Boman, M ;
Östlund, S .
PHYSICAL REVIEW B, 1999, 59 (16) :10493-10503
[3]  
[Anonymous], 2011, APPL MONTE CARLO MET
[4]  
[Anonymous], ARXIV12071602
[5]   Entanglement Entropy in a One-Dimensional Disordered Interacting System: The Role of Localization [J].
Berkovits, Richard .
PHYSICAL REVIEW LETTERS, 2012, 108 (17)
[6]   CONFORMAL-INVARIANCE, THE CENTRAL CHARGE, AND UNIVERSAL FINITE-SIZE AMPLITUDES AT CRITICALITY [J].
BLOTE, HWJ ;
CARDY, JL ;
NIGHTINGALE, MP .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :742-745
[7]   Nonuniversality of entanglement convertibility [J].
Braganca, Helena ;
Mascarenhas, Eduardo ;
Luiz, G. I. ;
Duarte, C. ;
Pereira, R. G. ;
Santos, M. F. ;
Aguiar, M. C. O. .
PHYSICAL REVIEW B, 2014, 89 (23)
[8]   Entanglement theory and the second law of thermodynamics [J].
Brandao, Fernando G. S. L. ;
Plenio, Martin B. .
NATURE PHYSICS, 2008, 4 (11) :873-877
[9]   Evolution of entanglement entropy in one-dimensional systems [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :15-38
[10]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,