An Electrochemical Ethylamine/Acetonitrile Redox Method for Ambient Hydrogen Storage

被引:14
|
作者
Wu, Dezhen [1 ]
Li, Jialu [1 ]
Yao, Libo [1 ]
Xie, Rongxuan [1 ]
Peng, Zhenmeng [1 ]
机构
[1] Univ Akron, Dept Chem Biomol & Corros Engn, Akron, OH 44325 USA
基金
美国国家科学基金会;
关键词
ambient hydrogen storage; electrocatalytic ethylamine dehydrogenation; electrocatalytic acetonitrile hydrogenation; hydrogen uptake and release; efficiency; CARBON; HYDRIDES;
D O I
10.1021/acsami.1c20498
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hydrogen storage presents a major difficulty in the development of hydrogen economy. Herein, we report a new electrochemical ethylamine/acetonitrile redox method for hydrogen storage with an 8.9 wt % theoretical storage capacity under ambient conditions. This method exhibits low onset overpotentials of 0.19 V in CH3CH2NH2 dehydrogenation to CH3CN and 0.09 V in CH3CN hydrogenation to CH3CH2NH2 using commercial Pt black catalyst. By assembling a full cell that couples CH3CH2NH2/CH3CN redox reactions with hydrogen evolution and oxidation reactions, we demonstrate a complete hydrogen storage cycle at fast rates, with only 52.5 kJ/mol energy consumption for H-2 uptake and release at a rate of 1 L/m(2).h. This method provides a viable hydrogen storage strategy that meets the 2025 Department of Energy onboard hydrogen storage target.
引用
收藏
页码:55281 / 55287
页数:7
相关论文
共 50 条
  • [21] Electrochemical storage of hydrogen in carbon nanostructures
    Yu, M. S.
    Cheng, S. Y.
    Lin, Y. C.
    Ho, W. C.
    International Journal of Nanoscience, Vol 2, Nos 4 and 5, 2003, 2 (4-5): : 307 - 317
  • [22] Electrochemical storage of hydrogen in activated carbons
    Jurewicz, K
    Frackowiak, E
    Béguin, F
    FUEL PROCESSING TECHNOLOGY, 2002, 77 : 415 - 421
  • [23] Electrochemical Method for the Assay of Organic Peroxides Directly in Acetonitrile
    Ivanova, Vanina
    Pimpilova, Mariya
    Stoyanova, Maria
    Dimcheva, Nina
    MOLECULES, 2025, 30 (02):
  • [24] Redox reactions of halogens for reversible electrochemical energy storage
    Chen, Song
    Zhang, Jintao
    DALTON TRANSACTIONS, 2020, 49 (29) : 9929 - 9934
  • [25] Surface Lattice Oxygen Confined Hydrogen Transfer for Electrochemical Acetonitrile Hydrogenation
    Zhang, Hao
    Yu, Linghao
    Yao, Yancai
    Zhou, Biao
    Cheng, Jundi
    Liu, Xupeng
    Chen, Ziyue
    Zhang, Hao
    Zhao, Long
    Zhang, Lizhi
    ACS CATALYSIS, 2025, 15 (06): : 4468 - 4476
  • [26] Synthesis of Carbon Nanotubes and Carbon Spheres and study of their hydrogen storage property by Electrochemical method
    Krishnamurthy, G.
    Namitha, R.
    Agarwal, Sarika
    INTERNATIONAL CONFERENCE ON ADVANCES IN MANUFACTURING AND MATERIALS ENGINEERING (ICAMME 2014), 2014, 5 : 1056 - 1065
  • [27] Electrochemical hydrogen storage of the graphene sheets prepared by DC arc-discharge method
    Guo, G. F.
    Huang, H.
    Xue, F. H.
    Liu, C. J.
    Yu, H. T.
    Quan, X.
    Dong, X. L.
    SURFACE & COATINGS TECHNOLOGY, 2013, 228 : S120 - S125
  • [28] Electrochemical and surface properties of hydrogen storage alloy produced by gas-atomization method
    Hua, Jun-she
    Liu, Chang-sheng
    Li, Mou-cheng
    Yu, Jia-kang
    Cai, Qing-kui
    Hu, Zhuang-qi
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2000, 21 (03): : 266 - 269
  • [29] Natural monocrystalline pyrite, chalcopyrite and galena as electrochemical sensors for potentiometric redox titrations in acetonitrile
    Mihajlovic, R.
    Stanic, Z.
    Antonijevic, M.
    ELECTROCHIMICA ACTA, 2006, 51 (18) : 3707 - 3713
  • [30] ELECTROCHEMICAL BEHAVIOR OF SELENOCYANATE-TRISELENOCYANATE REDOX COUPLE IN ACETONITRILE ON PLATINUM-ELECTRODES
    MARTINS, ME
    CASTELLANO, CE
    CALANDRA, AJ
    ARVIA, AJ
    ANALYTICAL CHEMISTRY, 1978, 50 (02) : 229 - 231