Nitric oxide function and signalling in plant disease resistance

被引:120
作者
Hong, Jeum Kyu [1 ]
Yun, Byung-Wook [1 ]
Kang, Jeong-Gu [1 ]
Raja, Muhammad Usman [1 ]
Kwon, Eunjung [1 ]
Sorhagen, Kirsti [1 ]
Chu, Chengcai [2 ]
Wang, Yiqin [1 ,2 ]
Loake, Gary J. [1 ]
机构
[1] Univ Edinburgh, Sch Biol Sci, Inst Plant Mol Sci, Edinburgh EH9 3JR, Midlothian, Scotland
[2] Chinese Acad Sci, Inst Genet & Dev Biol, Beijing 100101, Peoples R China
基金
英国生物技术与生命科学研究理事会;
关键词
hypersensitive response; nitric oxide; plant disease resistance; S-nitrosylation; S-nitrosothiols;
D O I
10.1093/jxb/erm244
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Nitric oxide (NO) is one of only a handful of gaseous signalling molecules. Its discovery as the endothelium-derived relaxing factor (EDRF) by Ignarro revolutionized how NO and cognate reactive nitrogen intermediates, which were previously considered to be toxic molecules, are viewed. NO is now emerging as a key signalling molecule in plants, where it orchestrates a plethora of cellular activities associated with growth, development, and environmental interactions. Prominent among these is its function in plant hypersensitive cell death and disease resistance. While a number of sources for NO biosynthesis have been proposed, robust and biologically relevant routes for NO production largely remain to be defined. To elaborate cell death during an incompatible plant-pathogen interaction NO functions in combination with reactive oxygen intermediates. Furthermore, NO has been shown to regulate the activity of metacaspases, evolutionary conserved proteases that may be intimately associated with pathogen-triggered cell death. NO is also thought to function in multiple modes of plant disease resistance by regulating, through S-nitrosylation, multiple nodes of the salicylic acid (SA) signalling pathway. These findings underscore the key role of NO in plant-pathogen interactions.
引用
收藏
页码:147 / 154
页数:8
相关论文
共 50 条
  • [21] Nitric oxide regulation of plant metabolism
    Gupta, Kapuganti Jagadis
    Kaladhar, Vemula Chandra
    Fitzpatrick, Teresa B.
    Fernie, Alisdair R.
    Moller, Ian Max
    Loake, Gary J.
    MOLECULAR PLANT, 2022, 15 (02) : 228 - 242
  • [22] Nitric oxide production and signalling in algae
    Astier, Jeremy
    Rossi, Jordan
    Chatelain, Pauline
    Klinguer, Agnes
    Besson-Bard, Angelique
    Rosnoblet, Claire
    Jeandroz, Sylvain
    Nicolas-Frances, Valerie
    Wendehenne, David
    JOURNAL OF EXPERIMENTAL BOTANY, 2021, 72 (03) : 781 - 792
  • [23] The diversity of nitric oxide function in plant responses to metal stress
    He, Huyi
    He, Longfei
    Gu, Minghua
    BIOMETALS, 2014, 27 (02) : 219 - 228
  • [24] The diversity of nitric oxide function in plant responses to metal stress
    Huyi He
    Longfei He
    Minghua Gu
    BioMetals, 2014, 27 : 219 - 228
  • [25] Cardiomyocytes as effectors of nitric oxide signalling
    Seddon, Mike
    Shah, Ajay M.
    Casadei, Barbara
    CARDIOVASCULAR RESEARCH, 2007, 75 (02) : 315 - 326
  • [26] Nitric oxide synthesis and signalling in plants
    Wilson, Ian D.
    Neill, Steven J.
    Hancock, John T.
    PLANT CELL AND ENVIRONMENT, 2008, 31 (05) : 622 - 631
  • [27] Nitric oxide signalling in salivary glands
    Looms, D
    Tritsaris, K
    Pedersen, AM
    Nauntofte, B
    Dissing, S
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2002, 31 (10) : 569 - 584
  • [28] ROLE OF NITRIC-OXIDE IN GASTROINTESTINAL FUNCTION AND DISEASE
    VANDERWINDEN, JM
    ACTA GASTRO-ENTEROLOGICA BELGICA, 1994, 57 (3-4): : 224 - 229
  • [30] Mechanisms of nitric oxide involvement in plant-microbe interaction and its enhancement of stress resistance
    Shah, Saud
    Chen, Chen
    Sun, Yekai
    Wang, Depeng
    Nawaz, Taufiq
    El-Kahtany, Khaled
    Fahad, Shah
    PLANT STRESS, 2023, 10