GLOBAL-IN-TIME STABILITY OF 2D MHD BOUNDARY LAYER IN THE PRANDTL-HARTMANN REGIME

被引:24
作者
Xie, Feng [1 ,2 ]
Yang, Tong [1 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, LSC MOE, Shanghai 200240, Peoples R China
[3] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
MHD boundary layer; Prandtl-Hartmann regime; global stability; analytic regularity; NAVIER-STOKES EQUATION; ZERO VISCOSITY LIMIT; WELL-POSEDNESS; ILL-POSEDNESS; ANALYTIC SOLUTIONS; MAGNETIC-FIELD; HALF-SPACE; EXISTENCE; SYSTEM; EULER;
D O I
10.1137/18M1174969
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the global existence of solutions with analytic regularity to the 2D magnetohydrodynamic (MHD) boundary layer equations in the mixed Prandtl and Hartmann regime derived by formal multiscale expansion in [D. Gerard-Varet and M. Prestipino, Z. Angew. Math. Phys., 68 (2017), 76]. The analysis shows that the combined effect of the magnetic diffusivity and transverse magnetic field on the boundary leads to a linear damping on the tangential velocity field near the boundary. And this damping effect yields the global-in-time analytic norm estimate in the tangential space variable on the perturbation of the classical steady Hartmann profile.
引用
收藏
页码:5749 / 5760
页数:12
相关论文
共 50 条
[31]   Stability of perturbations near a background magnetic field of the 2D incompressible MHD equations with mixed partial dissipation [J].
Lin, Hongxia ;
Ji, Ruihong ;
Wu, Jiahong ;
Yan, Li .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (02)
[32]   Global stability in the 2D Ricker equation [J].
Ryals, Brian ;
Sacker, Robert J. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2015, 21 (11) :1068-1081
[33]   Asymptotic stability of the 2D MHD equations without resistivity on a flat strip domain [J].
Chen, Dongxiang ;
Li, Xiaoli ;
Chen, Xiaoli .
JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (01)
[34]   Stability of the 2D Ideal MHD Equations with Damping in the domain T x R [J].
Duan, Zaimao ;
Lai, Suhua ;
Sheng, Jianglin .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (03)
[35]   Global Regularity of the 2D Density-Dependent MHD with Vacuum [J].
Liu, Yang .
ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
[36]   Global regularity of 2D generalized MHD equations with magnetic damping [J].
Ma, Caochuan ;
Zhang, Zhaoyun .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 53
[37]   Global regularity for the 2 1/2D incompressible Hall-MHD system with partial dissipation [J].
Du, Baoying .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (01)
[38]   Global strong solution to the 2D nonhomogeneous incompressible MHD system [J].
Huang, Xiangdi ;
Wang, Yun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) :511-527
[39]   Global regularity of 2D generalized MHD equations with magnetic diffusion [J].
Jiu, Quansen ;
Zhao, Jiefeng .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03) :677-687
[40]   Stability for a System of the 2D Incompressible MHD Equations with Fractional Dissipation [J].
Feng, Wen ;
Wang, Weinan ;
Wu, Jiahong .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2024, 26 (04)