Measurements of adhesive bondline effective thermal conductivity and thermal resistance using the laser flash method

被引:50
|
作者
Campbell, RC [1 ]
Smith, SE [1 ]
Dietz, RL [1 ]
机构
[1] Holometrix, Bedford, MA 01730 USA
来源
FIFTEENTH ANNUAL IEEE SEMICONDUCTOR THERMAL MEASUREMENT AND MANAGEMENT SYMPOSIUM | 1999年
关键词
D O I
10.1109/STHERM.1999.762433
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Thermal modeling of device packages requires accurate thermophysical property data for package materials. Accurate data for the thermal resistance of the adhesive bondline used to attach a high power device to a substrate is critical because this thermal resistance can be a significant part of the total thermal resistance in the heat flow path from the device junction to the package case or ambient. The bondline thermal resistance can in principle be calculated by dividing the expected or measured bondline thickness by the adhesive thermal conductivity measured on a free-standing cured sample. However, at a typical bondline thickness of 15-75 mu m, the contact thermal resistance between the adhesive and its adherents can be significant compared to the intrinsic thermal resistance of the adhesive and thus cannot be ignored. Also, the thermal conductivity measured on a free-standing cured sample may not be equivalent to the thermal conductivity of the adhesive in the bonded assembly. This paper will investigate some of the variables that determine the adhesive bondline effective thermal conductivity and contact resistance. The results of multi-layer laser flash diffusivity measurements will be presented for a range of available adhesives in "sandwich" sample assemblies that simulate the package. Thermal conductivity measurements of the adhesives free-standing will also be obtained by the laser flash method.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 50 条
  • [1] Measurements of adhesive bondline effective thermal conductivity and thermal resistance using the laser flash method
    Campbell, Robert C.
    Smith, Stephen E.
    Dietz, Raymond L.
    Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 1999, : 83 - 97
  • [2] Laser flash diffusivity measurements of filled adhesive effective thermal conductivity and contact resistance using multilayer methods
    Campbell, RC
    Smith, SE
    Dietz, RL
    THERMAL CONDUCTIVITY 25: THERMAL EXPANSION 13, 2000, 25 : 191 - 202
  • [3] Thermal conductivity measurements using the flash method
    Gaal, PS
    Thermitus, MA
    Stroe, DE
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2004, 78 (01) : 185 - 189
  • [4] Thermal conductivity measurements using the flash method
    P. S. Gaal
    M.-A. Thermitus
    Daniela E. Stroe
    Journal of Thermal Analysis and Calorimetry, 2004, 78 : 185 - 189
  • [5] Determination of the effective thermal conductivity of solid fuels by the laser flash method
    Kosowska-Golachowska, Monika
    Gajewski, Wladyslaw
    Musial, Tomasz
    ARCHIVES OF THERMODYNAMICS, 2014, 35 (03) : 3 - 16
  • [6] Evaluation of the Effective Sample Temperature in Thermal Diffusivity Measurements Using the Laser Flash Method
    H. Ohta
    T. Baba
    H. Shibata
    Y. Waseda
    International Journal of Thermophysics, 2002, 23 : 1659 - 1668
  • [7] Evaluation of the effective sample temperature in thermal diffusivity measurements using the laser flash method
    Ohta, H
    Baba, T
    Shibata, H
    Waseda, Y
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2002, 23 (06) : 1659 - 1668
  • [8] Thermal performance measurements of thermal interface materials using the laser flash method
    Khuu, Vinh
    Osterman, Michael
    Bar-Cohen, Avram
    Pecht, Michael
    IPACK 2007: PROCEEDINGS OF THE ASME INTERPACK CONFERENCE 2007, VOL 1, 2007, : 405 - 414
  • [9] Uncertainty of thermal diffusivity measurements using the laser flash method
    Vozár, L
    Hohenauer, W
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2005, 26 (06) : 1899 - 1915
  • [10] Uncertainty of Thermal Diffusivity Measurements Using the Laser Flash Method
    L. Vozár
    W. Hohenauer
    International Journal of Thermophysics, 2005, 26 : 1899 - 1915