Stability of the solution set of a noncoervive variational inequality

被引:0
作者
Adly, S [1 ]
Ernst, E
Théra, M
机构
[1] Univ Limoges, UMR CNRS 6090, LACO, F-87060 Limoges, France
[2] Fac Sci & Tech St Jerome, LMMT, F-13397 Marseille 20, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2001年 / 333卷 / 05期
关键词
D O I
10.1016/S0764-4442(01)01957-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, we study a general class of noncoercive variational inequalities. An existence result, as well as the stability of the solution set with respect to small perturbations of the data involved in the problem are given. This study is done using well-known tools of convex analysis and the concept of well-positioned convex sets. The reader can find the proofs of the results in [2]. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:409 / 414
页数:6
相关论文
共 6 条
[1]   Recession mappings and noncoercive variational inequalities [J].
Adly, S ;
Goeleven, D ;
Thera, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (09) :1573-1603
[2]  
Adly S, 2001, J CONVEX ANAL, V8, P127
[3]  
ADLY S, IN PRESS COMMUN CONT
[4]  
[Anonymous], CONVEX ANAL
[5]   NON-LINEAR EQUATIONS AND INEQUATIONS IN DUAL VECTORIAL SPACES [J].
BREZIS, H .
ANNALES DE L INSTITUT FOURIER, 1968, 18 (01) :115-&
[6]   VARIATIONAL INEQUALITIES [J].
LIONS, JL ;
STAMPACC.G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1967, 20 (03) :493-&