Limit theorems in free probability theory II

被引:6
作者
Chistyakov, Gennadii P. [1 ]
Goetze, Friedrich [2 ]
机构
[1] Natl Acad Sci Ukraine, Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine
[2] Univ Bielefeld, Fac Math, D-33501 Bielefeld 1, Germany
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2008年 / 6卷 / 01期
关键词
free random variables; Nevanlinna functions; Schur functions; free convolutions; limit theorems;
D O I
10.2478/s11533-008-0006-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on an analytical approach to the definition of multiplicative free convolution on probability measures on the nonnegative line R+ and on the unit circle T we prove analogs of limit theorems for nonidentically distributed random variables in classical Probability Theory.
引用
收藏
页码:87 / 117
页数:31
相关论文
共 18 条
[1]  
Akhiezer N. I., 1965, LECT APPROXIMATION T
[2]  
AKHIEZER NI, 1963, THEORY LINEAR OPERAT
[3]  
Barndorff-Nielsen OE, 2002, BERNOULLI, V8, P323
[4]  
BELINSCHI ST, CANAD MATH IN PRESS
[5]   Stable laws and domains of attraction in free probability theory [J].
Bercovici, H ;
Pata, V .
ANNALS OF MATHEMATICS, 1999, 149 (03) :1023-1060
[6]   LEVY-HINCIN TYPE THEOREMS FOR MULTIPLICATIVE AND ADDITIVE FREE CONVOLUTION [J].
BERCOVICI, H ;
VOICULESCU, D .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 153 (02) :217-248
[7]   FREE CONVOLUTION OF MEASURES WITH UNBOUNDED SUPPORT [J].
BERCOVICI, H ;
VOICULESCU, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (03) :733-773
[8]  
BERCOVICI H, LIMIT THEOREMS FREE
[9]   Processes with free increments [J].
Biane, P .
MATHEMATISCHE ZEITSCHRIFT, 1998, 227 (01) :143-174
[10]   Limit theorems in free probability theory.: I [J].
Chistyakov, G. P. ;
Goetze, F. .
ANNALS OF PROBABILITY, 2008, 36 (01) :54-90