A full multigrid method for nonlinear eigenvalue problems

被引:38
作者
Jia, ShangHui [1 ]
Xie, HeHu [2 ]
Xie, ManTing [2 ]
Xu, Fei [2 ]
机构
[1] Cent Univ Finance & Econ, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear eigenvalue problem; full multigrid method; multilevel correction; finite element method; MULTILEVEL CORRECTION SCHEME; FINITE-ELEMENT-METHOD; APPROXIMATIONS; CONVERGENCE; EQUATIONS;
D O I
10.1007/s11425-015-0234-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main idea is to transform the solution of the nonlinear eigenvalue problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and nonlinear eigenvalue problems on the coarsest finite element space. The linearized boundary value problems are solved by some multigrid iterations. Besides the multigrid iteration, all other efficient iteration methods for solving boundary value problems can serve as the linear problem solver. We prove that the computational work of this new scheme is truly optimal, the same as solving the linear corresponding boundary value problem. In this case, this type of iteration scheme certainly improves the overfull efficiency of solving nonlinear eigenvalue problems. Some numerical experiments are presented to validate the efficiency of the new method.
引用
收藏
页码:2037 / 2048
页数:12
相关论文
共 35 条
[1]  
Adams R.A., 1975, Sobolev Spaces
[2]  
BANK RE, 1981, MATH COMPUT, V36, P35, DOI 10.1090/S0025-5718-1981-0595040-2
[3]  
Bao W, 2007, DYNAMICS MODELS COAR, V9, P141
[4]   Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow [J].
Bao, WZ ;
Du, Q .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05) :1674-1697
[5]  
Bramble J H, 1993, PITMAN RES NOTES MAT, V294
[6]  
Bramble JH, 2000, HDBK NUM AN, V7, P173
[7]  
BRAMBLE JH, 1987, MATH COMPUT, V49, P311, DOI 10.1090/S0025-5718-1987-0906174-X
[8]   MULTIGRID METHODS FOR DIFFERENTIAL EIGENPROBLEMS [J].
BRANDT, A ;
MCCORMICK, S ;
RUGE, J .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1983, 4 (02) :244-260
[9]  
Brenner S., 2007, The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics
[10]   Numerical Analysis of Nonlinear Eigenvalue Problems [J].
Cances, Eric ;
Chakir, Rachida ;
Maday, Yvon .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) :90-117