Fractal dimensions of chaotic saddles of dynamical systems

被引:44
|
作者
Hunt, BR
Ott, E
Yorke, JA
机构
[1] UNIV MARYLAND,DEPT ELECT ENGN,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,DEPT PHYS,COLLEGE PK,MD 20742
[3] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 05期
关键词
D O I
10.1103/PhysRevE.54.4819
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A formula, applicable to invertible maps of arbitrary dimensionality, is derived for the information dimensions of the natural measures of a nonattracting chaotic set and of its stable and unstable manifolds. The result gives these dimensions in terms of the Lyapunov exponents and the decay time of the associated chaotic transient. As an example, the formula is applied to the physically interesting situation of filtering of data from chaotic systems.
引用
收藏
页码:4819 / 4823
页数:5
相关论文
共 50 条
  • [41] A minimum principle for chaotic dynamical systems
    Bracken, P
    Góra, P
    Boyarsky, A
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 166 (1-2) : 63 - 75
  • [42] Ergodic theory of chaotic dynamical systems
    Young, LS
    XIITH INTERNATIONAL CONGRESS OF MATHEMATICAL PHYSICS (ICMP '97), 1999, : 131 - 143
  • [43] Control and stabilization of dynamical chaotic systems
    Hamidouche, Baghdadi
    Guesmi, Kamel
    Essounbouli, Najib
    2021 7TH INTERNATIONAL CONFERENCE ON ENGINEERING AND EMERGING TECHNOLOGIES (ICEET 2021), 2021, : 1 - 6
  • [44] Regularized forecasting of chaotic dynamical systems
    Bollt, Erik M.
    CHAOS SOLITONS & FRACTALS, 2017, 94 : 8 - 15
  • [45] On control of nonlinear chaotic dynamical systems
    Magnitskii, NA
    Sidorov, SV
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 783 - 787
  • [46] Multistable chaotic dynamical systems and philosophy
    Aboites, Vicente
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (06): : 1821 - 1824
  • [47] Orbits' statistics in chaotic dynamical systems
    Arnold, V.
    NONLINEARITY, 2008, 21 (07) : T109 - T112
  • [48] SRB MEASURES IN CHAOTIC DYNAMICAL SYSTEMS
    Lee, Hyundeok
    KOREAN JOURNAL OF MATHEMATICS, 2018, 26 (02): : 327 - 335
  • [49] Energy and information of chaotic dynamical systems
    Boyarsky, A
    Góra, P
    CHAOS SOLITONS & FRACTALS, 2001, 12 (09) : 1611 - 1618
  • [50] Comparing chaotic and random dynamical systems
    Young, Lai-Sang
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (05)