Fractal dimensions of chaotic saddles of dynamical systems

被引:44
|
作者
Hunt, BR
Ott, E
Yorke, JA
机构
[1] UNIV MARYLAND,DEPT ELECT ENGN,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,DEPT PHYS,COLLEGE PK,MD 20742
[3] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 05期
关键词
D O I
10.1103/PhysRevE.54.4819
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A formula, applicable to invertible maps of arbitrary dimensionality, is derived for the information dimensions of the natural measures of a nonattracting chaotic set and of its stable and unstable manifolds. The result gives these dimensions in terms of the Lyapunov exponents and the decay time of the associated chaotic transient. As an example, the formula is applied to the physically interesting situation of filtering of data from chaotic systems.
引用
收藏
页码:4819 / 4823
页数:5
相关论文
共 50 条
  • [1] Fractal dimensions of chaotic saddles of dynamical systems
    Hunt, Brian R.
    Ott, Edward
    Yorke, James A.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 54 (05):
  • [2] Delayed Feedback Control Method for Dynamical Systems with Chaotic Saddles
    Kobayashi, Miki U.
    Aihara, Kazuyuki
    LET'S FACE CHAOS THROUGH NONLINEAR DYNAMICS, 2012, 1468 : 207 - 215
  • [3] Searching chaotic saddles in high dimensions
    Sala, M.
    Leitao, J. C.
    Altmann, E. G.
    CHAOS, 2016, 26 (12)
  • [4] Output functions and fractal dimensions in dynamical systems
    de Moura, APS
    Grebogi, C
    PHYSICAL REVIEW LETTERS, 2001, 86 (13) : 2778 - 2781
  • [5] Complexity, fractal dimensions and topological entropy in dynamical systems
    Affraimovich, V
    Glebsky, L
    Chaotic Dynamics and Transport in Classical and Quantum Systems, 2005, 182 : 35 - +
  • [6] FRACTAL BOUNDARIES IN OPEN HYDRODYNAMICAL FLOWS - SIGNATURES OF CHAOTIC SADDLES
    PENTEK, A
    TOROCZKAI, Z
    TEL, T
    GREBOGI, C
    YORKE, JA
    PHYSICAL REVIEW E, 1995, 51 (05) : 4076 - 4088
  • [7] Analysis of chaotic saddles in low-dimensional dynamical systems: the derivative nonlinear Schrodinger equation
    Rempel, EL
    Chian, ACL
    Macau, EEN
    Rosa, RR
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 199 (3-4) : 407 - 424
  • [8] Analysis of chaotic saddles in high-dimensional dynamical systems: The Kuramoto-Sivashinsky equation
    Rempel, EL
    Chian, ACL
    Macau, EEN
    Rosa, RR
    CHAOS, 2004, 14 (03) : 545 - 556
  • [9] Coexisting attractors, chaotic saddles, and fractal basins in a power electronic circuit
    Banerjee, S
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (09): : 847 - 849
  • [10] Coexisting attractors, chaotic saddles, and fractal basins in a power electronic circuit
    Indian Inst of Technology, Kharagpur, India
    IEEE Trans Circuits Syst I Fundam Theor Appl, 9 (847-849):