High-precision computation: Mathematical physics and dynamics

被引:93
作者
Bailey, D. H. [1 ]
Barrio, R. [2 ,3 ]
Borwein, J. M. [4 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[2] Univ Zaragoza, Depto Matemat Aplicada, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[4] Univ Newcastle, Ctr Comp Assisted Res Math & Its Applicat CARMA, Callaghan, NSW 2308, Australia
基金
澳大利亚研究理事会;
关键词
High-precision computation; Mathematical physics; Dynamical systems; Experimental mathematics; OSCILLATORY INFINITE INTEGRALS; TAYLOR-SERIES METHOD; OUTER SOLAR-SYSTEM; ORTHOGONAL POLYNOMIALS; RECURRENCE RELATIONS; NUMERICAL-SOLUTION; LORENZ ATTRACTOR; ISING-CLASS; ACCURATE; EXTRAPOLATION;
D O I
10.1016/j.amc.2012.03.087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents an overview of recent applications of these techniques and provides some analysis of their numerical requirements. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:10106 / 10121
页数:16
相关论文
共 82 条
[31]   Automated implementation of on-shell methods for one-loop amplitudes [J].
Berger, C. F. ;
Bern, Z. ;
Dixon, L. J. ;
Cordero, F. Febres ;
Forde, D. ;
Ita, H. ;
Kosower, D. A. ;
Maitre, D. .
PHYSICAL REVIEW D, 2008, 78 (03)
[32]  
Borwein J., 2004, EXPT MATH COMPUTATIO, DOI [10.1201/9781439864197, DOI 10.1201/9781439864197]
[33]  
Borwein J.M., 1989, CMS AMS C P, V96, P201
[34]  
Borwein J.M., 2010, EXPT MATH IN PRESS
[35]  
Borwein J.M., 1987, CANADIAN MATH SOC MO
[36]  
Borwein J.M., 2008, Mathematics by Experiment-Plausible Reasoning in the 21st Century
[37]   THE ARITHMETIC-GEOMETRIC MEAN AND FAST COMPUTATION OF ELEMENTARY-FUNCTIONS [J].
BORWEIN, JM ;
BORWEIN, PB .
SIAM REVIEW, 1984, 26 (03) :351-366
[38]  
Borwein Jonathan M., 2011, CAN MATH J GALLE OCT
[39]  
Clenshaw CW., 1955, Math Comp, V9, P118, DOI DOI 10.1090/S0025-5718-1955-0071856-0
[40]   SOLVING ORDINARY DIFFERENTIAL-EQUATIONS USING TAYLOR-SERIES [J].
CORLISS, G ;
CHANG, YF .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1982, 8 (02) :114-144