High-precision computation: Mathematical physics and dynamics

被引:92
作者
Bailey, D. H. [1 ]
Barrio, R. [2 ,3 ]
Borwein, J. M. [4 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[2] Univ Zaragoza, Depto Matemat Aplicada, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[4] Univ Newcastle, Ctr Comp Assisted Res Math & Its Applicat CARMA, Callaghan, NSW 2308, Australia
基金
澳大利亚研究理事会;
关键词
High-precision computation; Mathematical physics; Dynamical systems; Experimental mathematics; OSCILLATORY INFINITE INTEGRALS; TAYLOR-SERIES METHOD; OUTER SOLAR-SYSTEM; ORTHOGONAL POLYNOMIALS; RECURRENCE RELATIONS; NUMERICAL-SOLUTION; LORENZ ATTRACTOR; ISING-CLASS; ACCURATE; EXTRAPOLATION;
D O I
10.1016/j.amc.2012.03.087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents an overview of recent applications of these techniques and provides some analysis of their numerical requirements. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:10106 / 10121
页数:16
相关论文
共 82 条
[1]  
Abad A., ACM T MATH IN PRESS
[2]  
Abad Alberto, 2011, PHYS REV E, V84
[3]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[4]  
[Anonymous], 2010, Modern Computer Arithmetic, DOI DOI 10.1017/CBO9780511921698
[5]  
[Anonymous], 2007, NUMERICAL RECIPES
[6]   THE OUTER SOLAR-SYSTEM FOR 200 MILLION YEARS [J].
APPLEGATE, JH ;
DOUGLAS, MR ;
GURSEL, Y ;
SUSSMAN, GJ ;
WISDOM, J .
ASTRONOMICAL JOURNAL, 1986, 92 (01) :176-194
[7]   On the rapid computation of various polylogarithmic constants [J].
Bailey, D ;
Borwein, P ;
Plouffe, S .
MATHEMATICS OF COMPUTATION, 1997, 66 (218) :903-913
[8]   Hypergeometric forms for ising-class integrals [J].
Bailey, D. H. ;
Borwein, D. ;
Borwein, J. M. ;
Crandall, R. E. .
EXPERIMENTAL MATHEMATICS, 2007, 16 (03) :257-276
[9]   Integrals of the Ising class [J].
Bailey, D. H. ;
Borwein, J. M. ;
Crandall, R. E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (40) :12271-12302
[10]  
Bailey D.H., J COMPUT SCI