STABILITY FOR A MAGNETIC SCHRODINGER OPERATOR ON A RIEMANN SURFACE WITH BOUNDARY

被引:0
作者
Andersson, Joel [1 ]
Tzou, Leo [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
Calderon inverse problems; Cauchy data space; magnetic Schrodinger operator; Riemann surfaces; connection Laplacian; 2; DIMENSIONS; CAUCHY DATA;
D O I
10.3934/ipi.2018001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a magnetic Schrodinger operator (del(X))*del(X) + q on a compact Riemann surface with boundary and prove a log log-type stability estimate in terms of Cauchy data for the electric potential and magnetic field under the assumption that they satisfy appropriate a priori bounds. We also give a similar stability result for the holonomy of the connection 1-form X.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 20 条
[1]   Inverse Boundary Problems for Systems in Two Dimensions [J].
Albin, Pierre ;
Guillarmou, Colin ;
Tzou, Leo ;
Uhlmann, Gunther .
ANNALES HENRI POINCARE, 2013, 14 (06) :1551-1571
[2]  
[Anonymous], 1992, Grad. Texts in Math., DOI DOI 10.1007/978-1-4612-2034-3
[3]   Recovering a potential from Cauchy data in the two-dimensional case [J].
Bukhgeim, A. L. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (01) :19-33
[4]  
Forster O., 1991, GRADUATE TEXTS MATH, V81
[5]  
Guillarmou C., 2013, MATH SCI RES I PUBL, V60, P119
[6]   CALDERON INVERSE PROBLEM WITH PARTIAL DATA ON RIEMANN SURFACES [J].
Guillarmou, Colin ;
Tzou, Leo .
DUKE MATHEMATICAL JOURNAL, 2011, 158 (01) :83-120
[7]   Identification of a Connection from Cauchy Data on a Riemann Surface with Boundary [J].
Guillarmou, Colin ;
Tzou, Leo .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (02) :393-418
[8]  
Guillarmou Colin, 2010, AMSI ANU WORKSH SPEC, V44, P129
[9]   On the Reconstruction of Conductivity of a Bordered Two-dimensional Surface in R3 from Electrical Current Measurements on Its Boundary [J].
Henkin, G. M. ;
Novikov, R. G. .
JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (03) :543-587
[10]  
Hormander L., 2003, ANAL LINEAR PARTIAL