Aerobic oxidative methyl esterification of primary alcohols is an important chemical transformation that converts a nucleophile (alcohol) into a versatile electrophile (methyl ester). We recently discovered a heterogeneous PdBiTe/C catalyst that exhibits the highest activity yet reported for this transformation. Bi and Te serve as synergistic promoters that enhance both the rate and yield of the reactions relative to reactions employing Pd alone or Pd in combination with Bi or with Te as the sole promoter. Here, we report a mechanistic study of the oxidative methyl esterification of benzyl alcohol and 1-octanol to provide insights into the overall multistep transformation as well as the role of the Bi and Te in the reaction. The catalytic rates of the oxidative esterification of benzyl alcohol and octanol with Pd, PdBi, PdTe, and PdBiTe catalysts exhibit a saturation dependence on [alcohol] and [K2CO3] and a first-order dependence on pO(2). Hammett studies of benzyl alcohol oxidation reveal opposing electronic trends for initial rates of oxidation of alcohol to aldehyde (negative rho value) and the oxidation of aldehyde to methyl ester (positive rho value). These data and complementary kinetic isotope effect data support a Langmuir-Hinshelwood mechanism in which a surface-bound alkoxide or hemiacetal intermediate undergoes rate limiting beta-hydride elimination. Molecular oxygen participates in this process, as revealed by a first-order dependence on pO(2). X-ray photoelectron and X-ray absorption spectroscopic methods show that the promoters undergo oxidation in preference to Pd, maintaining the Pd surface in the active metallic state and preventing inhibition by surface Pd-oxide formation. Collectively, these results provide valuable insights into the synergistic benefits of multiple promoters in heterogeneous catalytic oxidation reactions.