Two-dimensional lattice Boltzmann model for compressible flows with high Mach number

被引:70
作者
Gan, Yanbiao [2 ]
Xu, Aiguo [1 ]
Zhang, Guangcai [1 ]
Yu, Xijun [1 ]
Li, Yingjun [2 ]
机构
[1] Inst Appl Phys & Computat Math, Natl Key Lab Computat Phys, Beijing 100088, Peoples R China
[2] China Univ Mining & Technol Beijing, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
lattice boltzmann method; compressible flows; von neumann analysis;
D O I
10.1016/j.physa.2007.11.013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we present an improved lattice Boltzmann model for compressible Navier-Stokes system with high Mach number. The model is composed of three components: (i) the discrete-velocity-model by M. Watari and M. Tsutahara [Phys. Rev. E 67 (2003) 036306], (ii) a modified Lax-Wendroff finite difference scheme where reasonable dissipation and dispersion are naturally included, (iii) artificial viscosity. The improved model is convenient to compromise the high accuracy and stability. The included dispersion term can effectively reduce the numerical oscillation at discontinuity. The added artificial viscosity helps the scheme to satisfy the von Neumann stability condition. Shock tubes and shock reflections are used to validate the new scheme. In our numerical tests the Mach numbers are successfully increased up to 20 or higher. The flexibility of the new model makes it suitable for tracking shock waves with high accuracy and for investigating nonlinear nonequilibrium complex systems. (c) 2007 Elsevier B.V. All fights reserved.
引用
收藏
页码:1721 / 1732
页数:12
相关论文
共 44 条
  • [1] LATTICE BOLTZMANN MODEL FOR COMPRESSIBLE FLUIDS
    ALEXANDER, FJ
    CHEN, H
    CHEN, S
    DOOLEN, GD
    [J]. PHYSICAL REVIEW A, 1992, 46 (04): : 1967 - 1970
  • [2] Minimal entropic kinetic models for hydrodynamics
    Ansumali, S
    Karlin, IV
    Öttinger, HC
    [J]. EUROPHYSICS LETTERS, 2003, 63 (06): : 798 - 804
  • [3] Entropy function approach to the Lattice Boltzmann method
    Ansumali, S
    Karlin, HV
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (1-2) : 291 - 308
  • [4] THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS
    BENZI, R
    SUCCI, S
    VERGASSOLA, M
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03): : 145 - 197
  • [5] A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS
    BHATNAGAR, PL
    GROSS, EP
    KROOK, M
    [J]. PHYSICAL REVIEW, 1954, 94 (03): : 511 - 525
  • [6] Stability and stabilization of the lattice Boltzmann method
    Brownlee, R. A.
    Gorban, A. N.
    Levesley, J.
    [J]. PHYSICAL REVIEW E, 2007, 75 (03):
  • [7] Extended Boltzmann kinetic equation for turbulent flows
    Chen, HD
    Kandasamy, S
    Orszag, S
    Shock, R
    Succi, S
    Yakhot, V
    [J]. SCIENCE, 2003, 301 (5633) : 633 - 636
  • [8] RKDG finite element method combined with BGK scheme for solving fluid dynamics system
    Dai, Qingfang
    Yu, Xijun
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03) : 805 - 831
  • [9] Lattice Boltzmann method for the compressible Euler equations
    Kataoka, T
    Tsutahara, M
    [J]. PHYSICAL REVIEW E, 2004, 69 (05): : 14 - 1
  • [10] Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio
    Kataoka, T
    Tsutahara, M
    [J]. PHYSICAL REVIEW E, 2004, 69 (03): : 035701 - 1