Universal quantum logic in hot silicon qubits

被引:221
作者
Petit, L. [1 ,2 ]
Eenink, H. G. J. [1 ,2 ]
Russ, M. [1 ,2 ]
Lawrie, W. I. L. [1 ,2 ]
Hendrickx, N. W. [1 ,2 ]
Philips, S. G. J. [1 ,2 ]
Clarke, J. S. [3 ]
Vandersypen, L. M. K. [1 ,2 ]
Veldhorst, M. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands
[3] Intel Corp, Components Res, Hillsboro, OR USA
关键词
ELECTRON-SPIN; NOISE; GATE;
D O I
10.1038/s41586-020-2170-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computation requires many qubits that can be coherently controlled and coupled to each other(1). Qubits that are defined using lithographic techniques have been suggested to enable the development of scalable quantum systems because they can be implemented using semiconductor fabrication technology(2-5). However, leading solid-state approaches function only at temperatures below 100 millikelvin, where cooling power is extremely limited, and this severely affects the prospects of practical quantum computation. Recent studies of electron spins in silicon have made progress towards a platform that can be operated at higher temperatures by demonstrating long spin lifetimes(6), gate-based spin readout(7) and coherent single-spin control(8). However, a high-temperature two-qubit logic gate has not yet been demonstrated. Here we show that silicon quantum dots can have sufficient thermal robustness to enable the execution of a universal gate set at temperatures greater than one kelvin. We obtain single-qubit control via electron spin resonance and readout using Pauli spin blockade. In addition, we show individual coherent control of two qubits and measure single-qubit fidelities of up to 99.3 per cent. We demonstrate the tunability of the exchange interaction between the two spins from 0.5 to 18 megahertz and use it to execute coherent two-qubit controlled rotations. The demonstration of 'hot' and universal quantum logic in a semiconductor platform paves the way for quantum integrated circuits that host both the quantum hardware and its control circuitry on the same chip, providing a scalable approach towards practical quantum information processing.
引用
收藏
页码:355 / +
页数:13
相关论文
共 36 条
  • [31] Silicon qubit fidelities approaching incoherent noise limits via pulse engineering
    Yang, C. H.
    Chan, K. W.
    Harper, R.
    Huang, W.
    Evans, T.
    Hwang, J. C. C.
    Hensen, B.
    Laucht, A.
    Tanttu, T.
    Hudson, F. E.
    Flammia, S. T.
    Itoh, K. M.
    Morello, A.
    Bartlett, S. D.
    Dzurak, A. S.
    [J]. NATURE ELECTRONICS, 2019, 2 (04) : 151 - 158
  • [32] Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting
    Yang, C. H.
    Rossi, A.
    Ruskov, R.
    Lai, N. S.
    Mohiyaddin, F. A.
    Lee, S.
    Tahan, C.
    Klimeck, G.
    Morello, A.
    Dzurak, A. S.
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [33] Dynamically controlled charge sensing of a few-electron silicon quantum dot
    Yang, C. H.
    Lim, W. H.
    Zwanenburg, F. A.
    Dzurak, A. S.
    [J]. AIP ADVANCES, 2011, 1 (04):
  • [34] A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%
    Yoneda, Jun
    Takeda, Kenta
    Otsuka, Tomohiro
    Nakajima, Takashi
    Delbecq, Matthieu R.
    Allison, Giles
    Honda, Takumu
    Kodera, Tetsuo
    Oda, Shunri
    Hoshi, Yusuke
    Usami, Noritaka
    Itoh, Kohei M.
    Tarucha, Seigo
    [J]. NATURE NANOTECHNOLOGY, 2018, 13 (02) : 102 - +
  • [35] Resonantly driven CNOT gate for electron spins
    Zajac, D. M.
    Sigillito, A. J.
    Russ, M.
    Borjans, F.
    Taylor, J. M.
    Burkard, G.
    Petta, J. R.
    [J]. SCIENCE, 2018, 359 (6374) : 439 - 442
  • [36] Silicon quantum electronics
    Zwanenburg, Floris A.
    Dzurak, Andrew S.
    Morello, Andrea
    Simmons, Michelle Y.
    Hollenberg, Lloyd C. L.
    Klimeck, Gerhard
    Rogge, Sven
    Coppersmith, Susan N.
    Eriksson, Mark A.
    [J]. REVIEWS OF MODERN PHYSICS, 2013, 85 (03) : 961 - 1019