Universal quantum logic in hot silicon qubits

被引:221
作者
Petit, L. [1 ,2 ]
Eenink, H. G. J. [1 ,2 ]
Russ, M. [1 ,2 ]
Lawrie, W. I. L. [1 ,2 ]
Hendrickx, N. W. [1 ,2 ]
Philips, S. G. J. [1 ,2 ]
Clarke, J. S. [3 ]
Vandersypen, L. M. K. [1 ,2 ]
Veldhorst, M. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands
[3] Intel Corp, Components Res, Hillsboro, OR USA
关键词
ELECTRON-SPIN; NOISE; GATE;
D O I
10.1038/s41586-020-2170-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computation requires many qubits that can be coherently controlled and coupled to each other(1). Qubits that are defined using lithographic techniques have been suggested to enable the development of scalable quantum systems because they can be implemented using semiconductor fabrication technology(2-5). However, leading solid-state approaches function only at temperatures below 100 millikelvin, where cooling power is extremely limited, and this severely affects the prospects of practical quantum computation. Recent studies of electron spins in silicon have made progress towards a platform that can be operated at higher temperatures by demonstrating long spin lifetimes(6), gate-based spin readout(7) and coherent single-spin control(8). However, a high-temperature two-qubit logic gate has not yet been demonstrated. Here we show that silicon quantum dots can have sufficient thermal robustness to enable the execution of a universal gate set at temperatures greater than one kelvin. We obtain single-qubit control via electron spin resonance and readout using Pauli spin blockade. In addition, we show individual coherent control of two qubits and measure single-qubit fidelities of up to 99.3 per cent. We demonstrate the tunability of the exchange interaction between the two spins from 0.5 to 18 megahertz and use it to execute coherent two-qubit controlled rotations. The demonstration of 'hot' and universal quantum logic in a semiconductor platform paves the way for quantum integrated circuits that host both the quantum hardware and its control circuitry on the same chip, providing a scalable approach towards practical quantum information processing.
引用
收藏
页码:355 / +
页数:13
相关论文
共 36 条
  • [1] Gate-defined quantum dots in intrinsic silicon
    Angus, Susan J.
    Ferguson, Andrew J.
    Dzurak, Andrew S.
    Clark, Robert G.
    [J]. NANO LETTERS, 2007, 7 (07) : 2051 - 2055
  • [2] Low-frequency charge noise in Si/SiGe quantum dots
    Connors, Elliot J.
    Nelson, J. J.
    Qiao, Haifeng
    Edge, Lisa F.
    Nichol, John M.
    [J]. PHYSICAL REVIEW B, 2019, 100 (16)
  • [3] Superconducting Circuits for Quantum Information: An Outlook
    Devoret, M. H.
    Schoelkopf, R. J.
    [J]. SCIENCE, 2013, 339 (6124) : 1169 - 1174
  • [4] Tunable Coupling and Isolation of Single Electrons in Silicon Metal Oxide-Semiconductor Quantum Dots
    Eenink, H. G. J.
    Petit, L.
    Lawrie, W. I. L.
    Clarke, J. S.
    Vandersypen, L. M. K.
    Veldhorst, M.
    [J]. NANO LETTERS, 2019, 19 (12) : 8653 - 8657
  • [5] Elzerman JM, 2004, NATURE, V430, P431, DOI 10.1039/nature02693
  • [6] Surface codes: Towards practical large-scale quantum computation
    Fowler, Austin G.
    Mariantoni, Matteo
    Martinis, John M.
    Cleland, Andrew N.
    [J]. PHYSICAL REVIEW A, 2012, 86 (03)
  • [7] Rent's rule and extensibility in quantum computing
    Franke, D. P.
    Clarke, J. S.
    Vandersypen, L. M. K.
    Veldhorst, M.
    [J]. MICROPROCESSORS AND MICROSYSTEMS, 2019, 67 : 1 - 7
  • [8] Comparison of low frequency charge noise in identically patterned Si/SiO2 and Si/SiGe quantum dots
    Freeman, Blake M.
    Schoenfield, Joshua S.
    Jiang, HongWen
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (25)
  • [9] Pulse sequence designed for robust C-phase gates in SiMOS and Si/SiGe double quantum dots
    Gungordu, Utkan
    Kestner, J. P.
    [J]. PHYSICAL REVIEW B, 2018, 98 (16)
  • [10] Fidelity benchmarks for two-qubit gates in silicon
    Huang, W.
    Yang, C. H.
    Chan, K. W.
    Tanttu, T.
    Hensen, B.
    Leon, R. C. C.
    Fogarty, M. A.
    Hwang, J. C. C.
    Hudson, F. E.
    Itoh, K. M.
    Morello, A.
    Laucht, A.
    Dzurak, A. S.
    [J]. NATURE, 2019, 569 (7757) : 532 - +