Elimination of biosynthetic pathways for L-valine and L-isoleucine in mitochondria enhances isobutanol production in engineered Saccharomyces cerevisiae

被引:14
作者
Lee, Kyung-Muk [1 ,2 ]
Kim, Sun-Ki [3 ]
Lee, Ye-Gi [1 ,2 ]
Park, Kyung-Hye [1 ,2 ]
Seo, Jin-Ho [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Agr Biotechnol, Seoul 08826, South Korea
[2] Seoul Natl Univ, Ctr Food & Bioconvergence, Seoul 08826, South Korea
[3] Chung Ang Univ, Dept Food Sci & Technol, Anseong 17546, Gyeonggi, South Korea
关键词
Isobutanol; Saccharomyces cerevisiae; Metabolic engineering; Gas trapping; YEAST; CHAIN; EXPRESSION; ALCOHOLS; GENES; IDENTIFICATION; OPTIMIZATION; IMPROVEMENT; PROTEINS; BIOFUELS;
D O I
10.1016/j.biortech.2018.07.150
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Saccharomyces cerevisiae has a natural ability to produce higher alcohols, making it a promising candidate for production of isobutanol. However, the several pathways competing with isobutanol biosynthesis lead to production of substantial amounts of L-valine and L-isoleucine in mitochondria and isobutyrate, L-leucine, and ethanol in cytosol. To increase flux to isobutanol by removing by-product formation, the genes associated with formation of L-valine (BATA L-isoleucine (ILV1), isobutyrate (ALD6), L-leucine (LEU1), and ethanol (ADH1) were disrupted to construct the S. cerevisiae W Delta GBIALA1_2vec strain. This strain showed 8.9 and 8.6 folds increases in isobutanol concentration and yield, respectively, relative the corresponding values of the background strain on glucose medium. In a bioreactor fermentation with a gas trapping system, the W Delta GBIALA1_2vec strain produced 662 mg/L isobutanol concentration with a yield of 6.71 mg(i)(sobutanol)/g(glucose). With elimination of the competing pathways, the W Delta GBIALA1_2vec strain would serve as a platform strain for isobutanol production.
引用
收藏
页码:271 / 277
页数:7
相关论文
共 37 条
  • [31] Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate
    Siripong, Wiparat
    Wolf, Philipp
    Kusumoputri, Theodora Puspowangi
    Downes, Joe James
    Kocharin, Kanokarn
    Tanapongpipat, Sutipa
    Runguphan, Weerawat
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
  • [32] Butanol production in S. cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance
    Swidah, R.
    Wang, H.
    Reid, P. J.
    Ahmed, H. Z.
    Pisanelli, A. M.
    Persaud, K. C.
    Grant, C. M.
    Ashe, M. P.
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2015, 8
  • [33] Urano J, 2012, US patent, Patent No. [8,232,089 B2, 8232089]
  • [34] Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae
    Vuralhan, Z
    Morais, MA
    Tai, SL
    Piper, MDW
    Pronk, JT
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (08) : 4534 - 4541
  • [35] Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels
    Weber, Christian
    Farwick, Alexander
    Benisch, Feline
    Brat, Dawid
    Dietz, Heiko
    Subtil, Thorsten
    Boles, Eckhard
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 87 (04) : 1303 - 1315
  • [36] Strain Optimization for Efficient Isobutanol Production Using Corynebacterium glutamicum Under Oxygen Deprivation
    Yamamoto, Shogo
    Suda, Masako
    Niimi, Satoko
    Inui, Masayuki
    Yukawa, Hideaki
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2013, 110 (11) : 2938 - 2948
  • [37] Construction of a Quadruple Auxotrophic Mutant of an Industrial Polyploid Saccharomyces cerevisiae Strain by Using RNA-Guided Cas9 Nuclease
    Zhang, Guo-Chang
    Kong, In Iok
    Kim, Heejin
    Liu, Jing-Jing
    Cate, Jamie H. D.
    Jin, Yong-Su
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2014, 80 (24) : 7694 - 7701