Multiparametric prostate MRI quality assessment using a semi-automated PI-QUAL software program

被引:21
作者
Giganti, Francesco [1 ,2 ]
Lindner, Sydney [3 ]
Piper, Jonathan W. [3 ]
Kasivisvanathan, Veeru [2 ,4 ]
Emberton, Mark [4 ]
Moore, Caroline M. [2 ,4 ]
Allen, Clare [1 ]
机构
[1] Univ Coll London Hosp NHS Fdn Trust, Dept Radiol, London, England
[2] UCL, Div Surg & Intervent Sci, 3rd Floor,Charles Bell House,43-45 Foley St, London W1W 7TS, England
[3] MIM Software Inc, Cleveland, OH USA
[4] Univ Coll London Hosp NHS Fdn Trust, Dept Urol, London, England
关键词
Prostatic neoplasms; Multiparametric magnetic resonance imaging; Quality improvements; Software;
D O I
10.1186/s41747-021-00245-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The technical requirements for the acquisition of multiparametric magnetic resonance imaging (mpMRI) of the prostate have been clearly outlined in the Prostate Imaging Reporting and Data System (PI-RADS) guidelines, but there is still huge variability in image quality among centres across the world. It has been difficult to quantify what constitutes a good-quality image, and a first attempt to address this matter has been the publication of the Prostate Imaging Quality (PI-QUAL) score and its dedicated scoring sheet. This score includes the assessment of technical parameters that can be obtained from the DICOM files along with a visual evaluation of certain features on prostate MRI (e.g., anatomical structures). We retrospectively analysed the image quality of 10 scans from different vendors and magnets using a semiautomated dedicated PI-QUAL software program and compared the time needed for assessing image quality using two methods (semiautomated assessment versus manual filling of the scoring sheet). This semiautomated software is able to assess the technical parameters automatically, but the visual assessment is still performed by the radiologist. There was a significant reduction in the reporting time of prostate mpMRI quality according to PI-QUAL using the dedicated software program compared to manual filling (5 ' 54 '' versus 7 ' 59 ''; p = 0.005). A semiautomated PI-QUAL software program allows the radiologist to assess the technical details related to the image quality of prostate mpMRI in a quick and reliable manner, allowing clinicians to have more confidence that the quality of mpMRI of the prostate is sufficient to determine patient care.
引用
收藏
页数:8
相关论文
共 16 条
[1]   National implementation of multi-parametric magnetic resonance imaging for prostate cancer detection - recommendations from a UK consensus meeting [J].
Appayya, Mrishta Brizmohun ;
Adshead, Jim ;
Ahmed, Hashim U. ;
Allen, Clare ;
Bainbridge, Alan ;
Barrett, Tristan ;
Giganti, Francesco ;
Graham, John ;
Haslam, Phil ;
Johnston, Edward W. ;
Kastner, Christof ;
Kirkham, Alexander P. S. ;
Lipton, Alexandra ;
McNeill, Alan ;
Moniz, Larissa ;
Moore, Caroline M. ;
Nabi, Ghulam ;
Padhani, Anwar R. ;
Parker, Chris ;
Patel, Amit ;
Pursey, Jacqueline ;
Richenberg, Jonathan ;
Staffurth, John ;
van der Meulen, Jan ;
Walls, Darren ;
Punwani, Shonit .
BJU INTERNATIONAL, 2018, 122 (01) :13-25
[2]   Applications of Artificial Intelligence to Prostate Multiparametric MRI (mpMRI): Current and Emerging Trends [J].
Bardis, Michelle D. ;
Houshyar, Roozbeh ;
Chang, Peter D. ;
Ushinsky, Alexander ;
Glavis-Bloom, Justin ;
Chahine, Chantal ;
Bui, Thanh-Lan ;
Rupasinghe, Mark ;
Filippi, Christopher G. ;
Chow, Daniel S. .
CANCERS, 2020, 12 (05)
[3]   ESUR/ESUI consensus statements on multi-parametric MRI for the detection of clinically significant prostate cancer: quality requirements for image acquisition, interpretation and radiologists' training [J].
de Rooij, Maarten ;
Israel, Bas ;
Tummers, Marcia ;
Ahmed, Hashim U. ;
Barrett, Tristan ;
Giganti, Francesco ;
Hamm, Bernd ;
Logager, Vibeke ;
Padhani, Anwar ;
Panebianco, Valeria ;
Puech, Philippe ;
Richenberg, Jonathan ;
Rouviere, Olivier ;
Salomon, Georg ;
Schoots, Ivo ;
Veltman, Jeroen ;
Villeirs, Geert ;
Walz, Jochen ;
Barentsz, Jelle O. .
EUROPEAN RADIOLOGY, 2020, 30 (10) :5404-5416
[4]   Performance of an Automated Workflow for Magnetic Resonance Imaging of the Prostate Comparison With a Manual Workflow [J].
Esser, Michael ;
Zinsser, Dominik ;
Kuendel, Matthias ;
Lingg, Andreas ;
Kiefer, Berthold ;
Weiland, Elisabeth ;
Nikolaou, Konstantin ;
Othman, Ahmed E. .
INVESTIGATIVE RADIOLOGY, 2020, 55 (05) :277-284
[5]   Measuring the Quality of Diagnostic Prostate Magnetic Resonance Imaging: A Urologist's Perspective [J].
Giannarini, Gianluca ;
Valotto, Claudio ;
Girometti, Rossano ;
Dal Moro, Fabrizio ;
Briganti, Alberto ;
Padhani, Anwar R. .
EUROPEAN UROLOGY, 2021, 79 (04) :440-441
[6]   Inter-reader agreement of the PI-QUAL score for prostate MRI quality in the NeuroSAFE PROOF trial [J].
Giganti, Francesco ;
Dinneen, Eoin ;
Kasivisvanathan, Veeru ;
Haider, Aiman ;
Freeman, Alex ;
Kirkham, Alex ;
Punwani, Shonit ;
Emberton, Mark ;
Shaw, Greg ;
Moore, Caroline M. ;
Allen, Clare .
EUROPEAN RADIOLOGY, 2022, 32 (02) :879-889
[7]   Prostate MRI quality: a critical review of the last 5 years and the role of the PI-QUAL score [J].
Giganti, Francesco ;
Kasivisvanathan, Veeru ;
Kirkham, Alex ;
Punwani, Shonit ;
Emberton, Mark ;
Moore, Caroline M. ;
Allen, Clare .
BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1131)
[8]   Prostate Imaging Quality (PI-QUAL): A New Quality Control Scoring System for Multiparametric Magnetic Resonance Imaging of the Prostate from the PRECISION trial [J].
Giganti, Francesco ;
Allen, Clare ;
Emberton, Mark ;
Moore, Caroline M. ;
Kasivisvanathan, Veeru .
EUROPEAN UROLOGY ONCOLOGY, 2020, 3 (05) :615-619
[9]  
Lin Yang, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P399, DOI 10.1007/978-3-319-66179-7_46
[10]   Deep Learning to Automate Reference-Free Image Quality Assessment of Whole-Heart MR Images [J].
Piccini, Davide ;
Demesmaeker, Robin ;
Heerfordt, John ;
Yerly, Jerome ;
Di Sopra, Lorenzo ;
Masci, Pier Giorgio ;
Schwitter, Juerg ;
Van De Ville, Dimitri ;
Richiardi, Jonas ;
Kober, Tobias ;
Stuber, Matthias .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (03)