Enhanced and Stable Field Emission from in Situ Nitrogen-Doped Few-Layered Graphene Nanoflakes

被引:156
作者
Soin, Navneet [1 ]
Roy, Susanta Sinha [1 ]
Roy, Soumyendu [2 ]
Hazra, Kiran Shankar [2 ]
Misra, Devi S. [2 ]
Lim, Teck H. [3 ]
Hetherington, Crispin J. [3 ]
McLaughlin, James A. [1 ]
机构
[1] Univ Ulster, Nanotechnol & Integrated Bioengn Ctr NIBEC, Newtownabbey BT37 0QB, Antrim, North Ireland
[2] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India
[3] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
基金
英国工程与自然科学研究理事会;
关键词
CARBON NANOTUBES; AMORPHOUS-CARBON; RAMAN-SCATTERING; ARC-DISCHARGE; SPECTRA; GRAPHITE; FILMS; MICROSTRUCTURE; PHOTOEMISSION; SPECTROSCOPY;
D O I
10.1021/jp110476m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Vertically aligned few-layered graphene (FLG) nanoflakes were synthesized on bare silicon (Si) substrates by a microwave plasma enhanced chemical vapor deposition method. In situ nitrogen (N-2) plasma treatment was carried out using electron cyclotron resonance plasma, resulting in various nitrogen functionalities being grafted to the FLG surface. Compared with pristine FLGs, the N-2 plasma-treated FLGs showed significant improvement in field emission characteristics by lowering the turn-on field (defined at 10 mu A/cm(2)) from 1.94 to 1.0 V/mu m. Accordingly, the field emission current increased from 17 mu A/cm(2) at 2.16 V/mu m for pristine FLGs to about 103 mu A/cm(2) at 1.45 V/mu m for N-doped FLGs. Furthermore, N-doped FLG samples retained 94% of the starting current over a period of 10 000 s, during which the fluctuations were of the order of +/- 10.7% only. The field emission behavior of pristine and N-2 plasma-treated FLGs is explained in terms of change in the effective microstructure as well as a reduction in the work function as probed by X-ray photoelectron valence band spectroscopy.
引用
收藏
页码:5366 / 5372
页数:7
相关论文
共 56 条
[1]   Substitutional nitrogen incorporation through rf glow discharge treatment and subsequent oxygen uptake on vertically aligned carbon nanotubes [J].
Abbas, Gamal ;
Papakonstantinou, Pagona ;
Iyer, Ganjigunte R. S. ;
Kirkman, Ian W. ;
Chen, Li C. .
PHYSICAL REVIEW B, 2007, 75 (19)
[2]   Field emission of doped carbon nanotubes [J].
Ahn, HS ;
Lee, KR ;
Kim, DY ;
Han, SW .
APPLIED PHYSICS LETTERS, 2006, 88 (09)
[3]  
Amaratunga GAJ, 1996, APPL PHYS LETT, V68, P2529, DOI 10.1063/1.116173
[4]   Valence band spectra of nitrogen incorporated amorphous carbon films [J].
Bhattacharyya, S ;
Spaeth, C ;
Richter, F .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (04) :2414-2421
[5]   Raman Spectroscopy of Graphene Edges [J].
Casiraghi, C. ;
Hartschuh, A. ;
Qian, H. ;
Piscanec, S. ;
Georgi, C. ;
Fasoli, A. ;
Novoselov, K. S. ;
Basko, D. M. ;
Ferrari, A. C. .
NANO LETTERS, 2009, 9 (04) :1433-1441
[6]   Edge-functionalized and substitutionally doped graphene nanoribbons:: Electronic and spin properties [J].
Cervantes-Sodi, F. ;
Csanyi, G. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2008, 77 (16)
[7]   Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes [J].
Chan, LH ;
Hong, KH ;
Xiao, DQ ;
Hsieh, WJ ;
Lai, SH ;
Shih, HC ;
Lin, TC ;
Shieu, FS ;
Chen, KJ ;
Cheng, HC .
APPLIED PHYSICS LETTERS, 2003, 82 (24) :4334-4336
[8]   Distribution and structure of N atoms in multiwalled carbon nanotubes using variable-energy X-ray photoelectron spectroscopy [J].
Choi, HC ;
Park, J ;
Kim, B .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (10) :4333-4340
[9]   Release of N2 from the carbon nanotubes via high-temperature annealing [J].
Choi, HC ;
Bae, SY ;
Jang, WS ;
Park, J ;
Song, HJ ;
Shin, HJ ;
Jung, H ;
Ahn, JP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (05) :1683-1688
[10]   Highly Active Porous Carbon-Supported Nonprecious Metal-N Electrocatalyst for Oxygen Reduction Reaction in PEM Fuel Cells [J].
Choi, Ja-Yeon ;
Hsu, Ryan S. ;
Chen, Zhongwei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (17) :8048-8053