共 21 条
Asymptotic behaviour of some families of orthonormal polynomials and an associated Hilbert space
被引:9
|作者:
Ignjatovic, Aleksandar
[1
]
机构:
[1] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia
关键词:
Orthogonal polynomials;
Unbounded recurrence coefficients;
Christoffel functions;
Almost periodic functions;
Signal processing;
D O I:
10.1016/j.jat.2016.06.002
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We characterise asymptotic behaviour of families of symmetric orthonormal polynomials whose recursion coefficients satisfy certain conditions, satisfied for example by the (normalised) Hermite polynomials. More generally, these conditions are satisfied by the recursion coefficients of the form c(n + 1)(p) for 0 < p < 1 and c > 0, as well as by recursion coefficients which correspond to polynomials orthonormal with respect to the exponential weight W(x) = exp(-vertical bar x vertical bar(beta)) for beta > 1. We use these results to show that, in a Hilbert space defined in a natural way by such a family of orthonormal polynomials, every two complex exponentials e(omega)(t) = e(i omega t) and e(alpha)(t) = e(i sigma t) of distinct frequencies omega, sigma are mutually orthogonal. We finally formulate a surprising conjecture for the corresponding families of non-symmetric orthonormal polynomials; extensive numerical tests indicate that such a conjecture appears to be true. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:41 / 79
页数:39
相关论文