Mechanical properties and phase stability of monoborides using density functional theory calculations

被引:6
作者
Kim, Hyojung [1 ]
Trinkle, Dallas R. [1 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
来源
PHYSICAL REVIEW MATERIALS | 2017年 / 1卷 / 01期
基金
美国国家科学基金会;
关键词
BORIDE EUTECTIC MATERIALS; ELASTIC-CONSTANTS; TITANIUM-ALLOYS; TIB; MICROSTRUCTURE; EQUILIBRIA; HARDNESS; METALS;
D O I
10.1103/PhysRevMaterials.1.013601
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We compute the structural energies, elastic constants, and stacking fault energies, and investigate the phase stability of monoborides with different compositions ((X1-xXx2)-X-1) B (X = Ti/Fe/Mo/Nb/V) using density functional theory in order to search for Ti monoborides with improved mechanical properties. Our computed Young's modulus and Pugh's modulus ratio, which correlate with stiffness and toughness, agree well with predictions from Vegard's law with the exceptions of mixed monoborides containing Mo and Fe. Among all the monoborides considered in this paper, TiB has the smallest Pugh's ratio, which suggests that the addition of solutes can improve the toughness of a Ti matrix. When (XB)-B-1 and (XB)-B-2 are respectively most stable in the B-27 and B-f structures, the mixed monoborides ((X1-xXx2)-X-1)B have a lower or similar stacking fault energy than TiB and could therefore improve the ductility of the Ti matrix. Among all ((X0.5X0.52)-X-1) B, mixed (Ti0.5Mo0.5) B and mixed (Ti0.5V0.5) B have a higher Young's modulus, a higher Pugh's ratio, and a smaller stacking fault energy than TiB. We also construct phase diagrams and find large solubility limits for solid solutions containing Ti compared to those containing Fe.
引用
收藏
页数:7
相关论文
共 45 条
  • [1] A theoretical investigation of mixing thermodynamics, age-hardening potential, and electronic structure of ternary M1-x1Mx2B2 alloys with AlB2 type structure
    Alling, B.
    Hoegberg, H.
    Armiento, R.
    Rosen, J.
    Hultman, L.
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [2] Artyukh LV, 2006, HIGH TEMP MAT PR-ISR, V25, P75
  • [3] Titanium-boride eutectic materials. Structure of the Ti-Nb-B alloys and phase equilibria
    Borisov, D. B.
    Artyukh, L. V.
    Bondar, A. A.
    Martsenyuk, P. S.
    Samelyuk, A. V.
    Tsiganenko, N. I.
    Fomichov, O. S.
    Velikanova, T. Ya.
    [J]. POWDER METALLURGY AND METAL CERAMICS, 2007, 46 (1-2) : 58 - 71
  • [4] The use of β titanium alloys in the aerospace industry
    Boyer, RR
    Briggs, RD
    [J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2005, 14 (06) : 681 - 685
  • [5] THE CRYSTAL STRUCTURE OF TIB
    DECKER, BF
    KASPER, JS
    [J]. ACTA CRYSTALLOGRAPHICA, 1954, 7 (01): : 77 - 81
  • [6] VEGARD LAW
    DENTON, AR
    ASHCROFT, NW
    [J]. PHYSICAL REVIEW A, 1991, 43 (06): : 3161 - 3164
  • [7] Biocompatibility of β-stabilizing elements of titanium alloys
    Eisenbarth, E
    Velten, D
    Müller, M
    Thull, R
    Breme, J
    [J]. BIOMATERIALS, 2004, 25 (26) : 5705 - 5713
  • [8] Stacking faults formation mechanism of in situ synthesized TiB whiskers
    Feng, Haibo
    Zhou, Yu
    Jia, Dechang
    Meng, Qingchang
    [J]. SCRIPTA MATERIALIA, 2006, 55 (08) : 667 - 670
  • [9] Graef M.D., 1992, Acta Metal. Mater, V40, P3395
  • [10] First-principle investigations of structure, elastic and bond hardness of FexB (x=1, 2, 3) under pressure
    Gueddouh, Ahmed
    Bentria, Bachir
    Lefkaier, I. K.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 406 : 192 - 199