Design and analysis of cementless hip-joint system using functionally graded material

被引:2
|
作者
Asiri, Saeed [1 ]
机构
[1] Engn Coll King Abdulaziz Univ, Mech Engn Dept, Jeddah, Saudi Arabia
关键词
functionally graded material; cementless hip-joint system; natural frequency; harmonic response; fatigue analysis; finite element analysis; modal analysis; MATERIAL SELECTION; PRODUCT DESIGN; BEHAVIOR; COMPONENT; IMPLANT;
D O I
10.24425/ame.2021.139804
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Functionally Graded Materials (FGM) are extensively employed for hip plant component material due to their certain properties in a specific design to achieve the requirements of the hip-joint system. Nevertheless, if there are similar properties, it doesn't necessarily indicate that the knee plant is efficiently and effectively working. Therefore, it is important to develop an ideal design of functionally graded material femoral components that can be used for a long period. A new ideal design of femoral prosthesis can be introduced using functionally graded fiber polymer (FGFP) which will reduce the stress shielding and the corresponding stresses present over the interface. Herein, modal analysis of the complete hip plant part is carried out, which is the main factor and to date, very few research studies have been found on it. Moreover, this enhances the life of hip replacement, and the modal, harmonic, and fatigue analysis determines the pre-loading failure phenomena due to the vibrational response of the hip. This study deals with the cementless hip plant applying the finite element analysis (FEA) model in which geometry is studied, and the femoral bone model is based in a 3D scan.
引用
收藏
页码:129 / 146
页数:18
相关论文
共 50 条
  • [41] An Analysis of the Heat Conduction Problem for Plates with the Functionally Graded Material Using the Hybrid Numerical Method
    Tian, J. H.
    Han, X.
    Long, S. Y.
    Xie, G. Q.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2009, 10 (03): : 229 - 242
  • [42] An Analysis of the Transient Heat Conduction for Plates with the Functionally Graded Material Using the Hybrid Numerical Method
    Tian, J. H.
    Han, X.
    Long, S. Y.
    Sun, G. Y.
    Cao, Y.
    Xie, G. Q.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 63 (02): : 101 - 115
  • [43] Design of a Functionally Graded Material Phonon Crystal Plate and Its Application in a Bridge
    Li, Shuqin
    Song, Jing
    Ren, Jingshun
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [44] Evaluation of fracture behavior of functionally graded material using SEN specimen
    S. Ganguwar
    V. M. Nistane
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46
  • [45] Characterization of a functionally graded material produced using a new designed blender
    Rahmani, Kaveh
    Majzoobi, G. H.
    Das, R.
    PHYSICA SCRIPTA, 2024, 99 (02)
  • [46] Evaluation of fracture behavior of functionally graded material using SEN specimen
    Ganguwar, S.
    Nistane, V. M.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (01)
  • [47] Vibration analysis of functionally graded material sandwich structures with passive damping
    Moita, Jose S.
    Araujo, Aurelio L.
    Mota Soares, Cristovao M.
    Mota Soares, Carlos A.
    COMPOSITE STRUCTURES, 2018, 183 : 407 - 415
  • [48] Transient thermal stress analysis of an edge crack in a functionally graded material
    Z.-H. Jin
    Glaucio H. Paulino
    International Journal of Fracture, 2001, 107 : 73 - 98
  • [49] Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam
    Li, Yingli
    Meguid, S. A.
    Fu, Yiming
    Xu, Daolin
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2162):
  • [50] Transient thermal stress analysis of an edge crack in a functionally graded material
    Jin, ZH
    Paulino, GH
    INTERNATIONAL JOURNAL OF FRACTURE, 2001, 107 (01) : 73 - 98