Design and analysis of cementless hip-joint system using functionally graded material

被引:2
|
作者
Asiri, Saeed [1 ]
机构
[1] Engn Coll King Abdulaziz Univ, Mech Engn Dept, Jeddah, Saudi Arabia
关键词
functionally graded material; cementless hip-joint system; natural frequency; harmonic response; fatigue analysis; finite element analysis; modal analysis; MATERIAL SELECTION; PRODUCT DESIGN; BEHAVIOR; COMPONENT; IMPLANT;
D O I
10.24425/ame.2021.139804
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Functionally Graded Materials (FGM) are extensively employed for hip plant component material due to their certain properties in a specific design to achieve the requirements of the hip-joint system. Nevertheless, if there are similar properties, it doesn't necessarily indicate that the knee plant is efficiently and effectively working. Therefore, it is important to develop an ideal design of functionally graded material femoral components that can be used for a long period. A new ideal design of femoral prosthesis can be introduced using functionally graded fiber polymer (FGFP) which will reduce the stress shielding and the corresponding stresses present over the interface. Herein, modal analysis of the complete hip plant part is carried out, which is the main factor and to date, very few research studies have been found on it. Moreover, this enhances the life of hip replacement, and the modal, harmonic, and fatigue analysis determines the pre-loading failure phenomena due to the vibrational response of the hip. This study deals with the cementless hip plant applying the finite element analysis (FEA) model in which geometry is studied, and the femoral bone model is based in a 3D scan.
引用
收藏
页码:129 / 146
页数:18
相关论文
共 50 条
  • [31] Optimal design of functionally graded foam material under impact loading
    Zhang, Xiong
    Zhang, Hui
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2013, 68 : 199 - 211
  • [32] Analysis for the thermoelastic bending of a functionally graded material cylindrical shell
    Hong-Liang Dai
    Ting Dai
    Meccanica, 2014, 49 : 1069 - 1081
  • [33] Free Vibration Analysis of an Adhesively Bonded Functionally Graded Tubular Single Lap Joint
    Gunes, Recep
    Apalak, M. Kemal
    Yildirim, Mustafa
    JOURNAL OF ADHESION, 2011, 87 (09) : 902 - 925
  • [34] Free vibration analysis of an adhesively bonded functionally graded double containment cantilever joint
    Apalak, Z. Gul
    Ekici, Recep
    Yildirim, Mustafa
    Apalak, M. Kemal
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2014, 28 (12) : 1117 - 1139
  • [35] Design optimization of a functionally graded overlay using FEA
    Fouquet, V.
    Tapie, L.
    Attal, J. P.
    Benoit, A.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2020, 23 : S110 - S112
  • [36] Mixed Finite Element for Crack Analysis in Functionally Graded Material
    Benmalek, Haroune
    Bouziane, Salah
    Bouzerd, Hamoudi
    Remmani, Sid Ahmed
    INTERNATIONAL JOURNAL OF SUSTAINABLE CONSTRUCTION ENGINEERING AND TECHNOLOGY, 2023, 14 (04): : 227 - 237
  • [37] Exact Thermoelastic Analysis of Functionally Graded Anisotropic Hollow Cylinders with Arbitrary Material Gradation
    Vel, Senthil S.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2011, 18 (01) : 14 - 31
  • [38] Free-Edge Stress Analysis of Functionally Graded Material Layered Biocomposite Laminates
    Huang, Bin
    Kim, Heung Soo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (10) : 7451 - 7457
  • [39] Thermal post-buckling analysis of uniform slender functionally graded material beams
    Anandrao, K. Sanjay
    Gupta, R. K.
    Ramchandran, P.
    Rao, G. Venkateswara
    STRUCTURAL ENGINEERING AND MECHANICS, 2010, 36 (05) : 545 - 560
  • [40] Nonlinear thermal analysis of functionally graded material plates using a NURBS based isogeometric approach
    Jari, H.
    Atri, H. R.
    Shojaee, S.
    COMPOSITE STRUCTURES, 2015, 119 : 333 - 345