Simulation of Landau quantization effects due to strong magnetic fields in (110) Si hole inversion layers

被引:0
作者
Pham, A. T. [1 ]
Jungemann, C. [2 ]
Meinerzhagen, B. [1 ]
机构
[1] TU Braunschweig, BST, D-38023 Braunschweig, Germany
[2] Univ Bundeswehr Munchen, EIT4, D-85577 Neubiberg, Germany
来源
2010 14TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ELECTRONICS (IWCE 2010) | 2010年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Landau quantization due to strong magnetic fields is simulated for (110) Si hole inversion layers. The simulations are based on the self-consistent solution of the 6 x 6 (k) over right arrow. (p) over right arrow Schrodinger equation (SE) and Poisson equation (PE). A new method to solve the 2D (k) over right arrow . (p) over right arrow SE is presented. The new simulations take into account Landau quantization, Zeeman spin splitting and size quantization at the same time. Oscillations of the density of states at the Fermi level (D-F (B) or D-F (V-G)) are demonstrated. The oscillations of the simulated D-F (V-G) characteristics are similar to the oscillations that measured transconductance versus gate voltage (g(m) (V-G)) characteristics show for the same samples and identical conditions.
引用
收藏
页码:335 / 338
页数:4
相关论文
共 8 条
[1]   THEORY OF QUANTUM TRANSPORT IN A 2-DIMENSIONAL ELECTRON-SYSTEM UNDER MAGNETIC-FIELDS .1. CHARACTERISTICS OF LEVEL BROADENING AND TRANSPORT UNDER STRONG FIELDS [J].
ANDO, T ;
UEMURA, Y .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 36 (04) :959-967
[2]   On the numerical aspects of deterministic multisubband device simulations for strained double gate PMOSFETs [J].
Anh-Tuan Pham ;
Jungemann, Christoph ;
Meinerzhagen, Bernd .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2009, 8 (3-4) :242-266
[3]   JADAMILU:: a software code for computing selected eigenvalues of large sparse symmetric matrices [J].
Bollhoefer, Matthias ;
Notay, Yvan .
COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (12) :951-964
[4]   Zeeman spin splittings in semiconductor nanostructures [J].
Kotlyar, R ;
Reinecke, TL ;
Bayer, M ;
Forchel, A .
PHYSICAL REVIEW B, 2001, 63 (08)
[5]  
Landau L. D., 1977, QUANTUM MECH NONRELA, V3rd
[6]  
LATUSSEK V, 1991, ANN PHYS, V503, P394
[7]   6x6 effective mass Hamiltonian for heterostructures grown on (11N)-oriented substrates -: art. no. 075318 [J].
Seo, WH ;
Donegan, JF .
PHYSICAL REVIEW B, 2003, 68 (07)
[8]  
TAKAHASHI T, 2009, IEDM