Correlation widths in quantum-chaotic scattering

被引:6
作者
Dietz, B. [1 ]
Richter, A. [1 ,3 ]
Weidenmueller, H. A. [2 ]
机构
[1] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany
[2] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany
[3] ECT, I-38123 Villazzano, Trento, Italy
关键词
Compound nucleus; Cross-section correlation function; Weisskopf estimate; COMPOUND-NUCLEUS SCATTERING; S-MATRIX; CROSS SECTIONS; FLUCTUATIONS; RESONANCES; CAVITIES; PHYSICS; STATISTICS; ABSORPTION; ELEMENTS;
D O I
10.1016/j.physletb.2011.02.009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An important parameter to characterize the scattering matrix S for quantum-chaotic scattering is the width Gamma(corr) of the S-matrix autocorrelation function. We show that the "Weisskopf estimate" d/(2 pi) Sigma T-c(c) (where d is the mean resonance spacing, T-c with 0 <= T-c <= 1 the "transmission coefficient" in channel c and where the sum runs over all channels) provides a good approximation to Gamma(corr) even when the number of channels is small. That same conclusion applies also to the cross-section correlation function. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:313 / 317
页数:5
相关论文
共 50 条
[21]   Statistics of time delay and scattering correlation functions in chaotic systems. I. Random matrix theory [J].
Novaes, Marcel .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (06)
[22]   Spectral anomalies and broken symmetries in maximally chaotic quantum maps [J].
Shou, Laura ;
Vikram, Amit ;
Galitski, Victor .
SCIPOST PHYSICS, 2025, 18 (05)
[23]   Conductance stability in chaotic and integrable quantum dots with random impurities [J].
Wang, Guanglei ;
Ying, Lei ;
Lai, Ying-Cheng .
PHYSICAL REVIEW E, 2015, 92 (02)
[24]   Semiclassical theory for decay and fragmentation processes in chaotic quantum systems [J].
Gutierrez, Martha ;
Waltner, Daniel ;
Kuipers, Jack ;
Richter, Klaus .
PHYSICAL REVIEW E, 2009, 79 (04)
[25]   Quantum state transfer of electrons in chaotic quantum dots [J].
Santos, Eduardo H. ;
Almeida, Francisco A. G. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 127
[26]   Chaotic scattering with localized losses: S-matrix zeros and reflection time difference for with broken time-reversal invariance [J].
Osman, Mohammed ;
Fyodorov, Yan V. .
PHYSICAL REVIEW E, 2020, 102 (01)
[27]   Delay times in chaotic quantum systems [J].
Martinez-Arguello, A. M. ;
Fernandez-Marin, A. A. ;
Martinez-Mares, M. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (03) :519-527
[28]   Chaotic behavior in quantum transport devices [J].
Harada, S ;
Kida, N ;
Morimoto, T ;
Hemmi, M ;
Naito, R ;
Sasaki, T ;
Aoki, N ;
Harayama, T ;
Bird, JP ;
Ochiai, Y .
PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2005, 772 :475-476
[29]   Density matrix of chaotic quantum systems [J].
Yang, Xinxin ;
Wang, Pei .
EUROPEAN PHYSICAL JOURNAL B, 2020, 93 (10)
[30]   Exposing hypersensitivity in quantum chaotic dynamics [J].
Grudka, Andrzej ;
Kurzynski, Pawel ;
Sajna, Adam S. ;
Wojcik, Jan ;
Wojcik, Antoni .
PHYSICAL REVIEW E, 2023, 108 (06)