Facile fabrication of highly flexible poly(lactic acid) film using alternate multilayers of poly[(butylene adipate)-co-terephthalate]

被引:19
作者
Lee, Deuk-Young [1 ,2 ]
Lee, Sang Ha [1 ]
Cho, Mi Suk [1 ]
Nam, Jae Do [3 ]
Lee, Youngkwan [1 ]
机构
[1] Sungkyunkwan Univ, Sch Chem Engn, Suwon 440746, South Korea
[2] SKC Co Ltd, Adv Technol R&D Ctr, Suwon 440301, South Korea
[3] Sungkyunkwan Univ, Dept Polymer Sci & Engn, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
poly(lactic acid); poly[(butylene adipate)-co-terephthalate; alternate multilayer; flexibility; ACID)/POLY(BUTYLENE ADIPATE-CO-TEREPHTHALATE) BLENDS; POLY(LACTIDE)/POLY(ETHYLENE GLYCOL) BLENDS; BIODEGRADABLE POLYMER BLENDS; POLY(ETHYLENE GLYCOL); THERMAL-PROPERTIES; TRIBUTYL CITRATE; CRYSTALLIZATION BEHAVIOR; POLY(PROPYLENE GLYCOL); MECHANICAL-PROPERTIES; PHASE-SEPARATION;
D O I
10.1002/pi.4848
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(lactic acid) (PLA) and poly[(butylene adipate)-co-terephthalate] (PBAT) are both commonly used biodegradable polymers. In this study, co-extrusion of PLA and PBAT was used to create alternately multilayered films in order to obtain high-flexibility PLA film. The incorporation of PBAT provides enhanced flexibility to PLA and the effect is more distinct in the PLA/PBAT multilayer film as the number of layers increases. Through differential scanning calorimetric and wide-angle X-ray scattering analyses, the crystallinity of PLA is shown to decrease more in the multilayer film than in the blended film. Transparency is also enhanced in the multilayer film. The fabrication of alternate multilayered film by co-extrusion of PLA and PBAT shows a new method of preparing a flexible, transparent and fully biodegradable film, which is impossible through a blending process. (c) 2014 Society of Chemical Industry
引用
收藏
页码:581 / 585
页数:5
相关论文
共 51 条
  • [1] Fracture toughness of poly(lactic acid)/ethylene acrylate copolymer/wood-flour composite ternary blends
    Afrifah, Kojo A.
    Matuana, Laurent M.
    [J]. POLYMER INTERNATIONAL, 2013, 62 (07) : 1053 - 1058
  • [2] Bhatia A, 2007, KOREA-AUST RHEOL J, V19, P125
  • [3] Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly(lactide)s
    Bouapao, Leevameng
    Tsuji, Hideto
    Tashiro, Kohji
    Zhang, Jianming
    Hanesaka, Makoto
    [J]. POLYMER, 2009, 50 (16) : 4007 - 4017
  • [4] ANALYSIS AND CHARACTERIZATION OF RESORBABLE DL-LACTIDE TRIMETHYLENE CARBONATE COPOLYESTERS
    BUCHHOLZ, B
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 1993, 4 (04) : 381 - 388
  • [5] On the compatibility of polysaccharide/maleic copolymer blends - I. Thermal behaviour of dextran containing blends
    Bumbu, GG
    Vasile, C
    Chitanu, GC
    Carpov, A
    [J]. POLYMER DEGRADATION AND STABILITY, 2001, 72 (01) : 99 - 108
  • [6] Crystalline Morphology of PLA/Clay Nanocomposite Films and Its Correlation with Other Properties
    Das, Kunal
    Ray, Dipa
    Banerjee, Indranil
    Bandyopadhyay, N. R.
    Sengupta, Suparna
    Mohanty, Amar K.
    Misra, Manjusri
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2010, 118 (01) : 143 - 151
  • [7] HIGH-IMPACT STRENGTH AS-POLYMERIZED PLLA
    GRIJPMA, DW
    NIJENHUIS, AJ
    VANWIJK, PGT
    PENNINGS, AJ
    [J]. POLYMER BULLETIN, 1992, 29 (05) : 571 - 578
  • [8] Toughening of polylactide with epoxy-functionalized methyl methacrylate-butadiene copolymer
    Hao, Yanping
    Liang, Hongyu
    Bian, Junjia
    Sun, Shulin
    Zhang, Huiliang
    Dong, Lisong
    [J]. POLYMER INTERNATIONAL, 2014, 63 (04) : 660 - 666
  • [9] HiljanenVainio M, 1996, J APPL POLYM SCI, V59, P1281, DOI 10.1002/(SICI)1097-4628(19960222)59:8<1281::AID-APP11>3.0.CO
  • [10] 2-9