Lattice evolution and enhanced piezoelectric properties of hydrothermally synthesised 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 nanofibers

被引:20
作者
Ghasemian, Mohammad Bagher [1 ]
Rawal, Aditya [2 ]
Wang, Feifei [3 ]
Chu, Dewei [1 ]
Wang, Danyang [1 ]
机构
[1] UNSW Sydney, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[2] UNSW Sydney, Mark Wainwright Analyt Ctr, Nucl Magnet Resonance Facil, Sydney, NSW 2052, Australia
[3] Shanghai Normal Univ, Dept Phys, Key Lab Optoelect Mat & Device, Shanghai 200234, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
MORPHOTROPIC PHASE-BOUNDARY; LEAD-FREE; ELECTRICAL-PROPERTIES; DEPOLARIZATION TEMPERATURE; BARIUM-TITANATE; THIN-FILMS; CERAMICS; NANOSTRUCTURES; NANOWIRE; SYSTEM;
D O I
10.1039/c7tc03812g
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, a facile low-temperature hydrothermal method accompanied by a moderate annealing process is introduced to synthesise highly crystallized lead-free piezoelectric 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO(3) (BNBT) nanofibers where sodium ions in the native (Bi0.5Na0.5)TiO3 (BNT) lattice are substituted with larger barium ions. The BNBT nanofibers are typically 150-200 nm in diameter composed of a confirmed pure perovskite phase with the orientation of (101) along the fiber length direction. A rhombohedral lattice structure was verified by transmission electron microscopy measurements after introducing barium into the BNT structure. Solid-state Na-23 NMR evidenced a reduced disorder in the primary A site of the BNBT as compared to the BNT, along with the formation of additional Na environments, which were assigned to an inhomogeneous distribution of Ba in the system. A significant piezoelectric constant of d(33) = similar to 26 not approximate to +/- 2 pm V-1 in the diameter direction was found for these BNBT nanofibers.
引用
收藏
页码:10976 / 10984
页数:9
相关论文
共 51 条
[1]   Ferroelectric and piezoelectric properties of lead-free BaTiO3 doped Bi0.5Na0.5TiO3 thin films from metal-organic solution deposition [J].
Acharya, Susant Kumar ;
Lee, Sang-Kwon ;
Hyung, Jung-Hwan ;
Yang, Yun-Ho ;
Kim, Bok-Hee ;
Ahn, Byung-Guk .
JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 540 :204-209
[2]   Lead-Free Ferroelectric (Na1/2Bi1/2)TiO3-BaTiO3 Thin Films in the Morphotropic Phase Boundary Composition: Solution Processing and Properties [J].
Alonso-Sanjose, David ;
Jimenez, Ricardo ;
Bretos, Inigo ;
Calzada, Maria L. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (10) :2218-2225
[3]   The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes [J].
Bavykin, DV ;
Parmon, VN ;
Lapkin, AA ;
Walsh, FC .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (22) :3370-3377
[4]   Piezoelectric nanofibers for energy scavenging applications [J].
Chang, Jiyoung ;
Domnner, Michael ;
Chang, Chieh ;
Lin, Liwei .
NANO ENERGY, 2012, 1 (03) :356-371
[5]   Structure and electrical properties of (Na0.5Bi0.5)1-xBaxTiO3 piezoelectric ceramics [J].
Chen, Min ;
Xu, Qing ;
Kim, Bok Hee ;
Ahn, Byeong Kuk ;
Ko, Jung Hoon ;
Kang, Woo Jin ;
Nam, O. Jeong .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (04) :843-849
[6]   Facile synthesis and high d33 of single-crystalline KNbO3 nanocubes [J].
Ge, Haiyan ;
Hou, Yudong ;
Zhu, Mankang ;
Wang, Hao ;
Yan, Hui .
CHEMICAL COMMUNICATIONS, 2008, (41) :5137-5139
[7]   Morphology control and large piezoresponse of hydrothermally synthesized lead-free piezoelectric (Bi0.5Na0.5)TiO3 nanofibres [J].
Ghasemian, Mohammad Bagher ;
Lin, Qianru ;
Adabifiroozjaei, Esmaeil ;
Wang, Feifei ;
Chu, Dewei ;
Wang, Danyang .
RSC ADVANCES, 2017, 7 (25) :15020-15026
[8]   Reconciling Local Structure Disorder and the Relaxor State in (Bi1/2Na1/2)TiO3-BaTiO3 [J].
Groszewicz, Pedro B. ;
Groeting, Melanie ;
Breitzke, Hergen ;
Jo, Wook ;
Albe, Karsten ;
Buntkowsky, Gerd ;
Roedel, Juergen .
SCIENTIFIC REPORTS, 2016, 6
[9]   Nanoscale ferroelectrics: processing, characterization and future trends [J].
Gruverman, A. ;
Kholkin, A. .
REPORTS ON PROGRESS IN PHYSICS, 2006, 69 (08) :2443-2474
[10]   Hydrothermal synthesis of Na0.5Bi0.5TiO3 fine powders [J].
Jing, XZ ;
Li, YX ;
Yin, QG .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2003, 99 (1-3) :506-510