On Liouville Type Theorem for Stationary Non-Newtonian Fluid Equations

被引:2
作者
Chae, Dongho [1 ,2 ]
Wolf, Joerg [1 ]
机构
[1] Chung Ang Univ, Dept Math, Heukseok Ro 84, Seoul 06974, South Korea
[2] Korea Inst Adv Study, Sch Math, Hoegi Ro 85, Seoul 02455, South Korea
关键词
Non-Newtonian fluid equations; Liouville type theorem; NAVIER-STOKES EQUATIONS;
D O I
10.1007/s00332-020-09615-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a Liouville type theorem for non-Newtonian fluid equations in R3, having the diffusion term Ap(u)=del(|D(u)|p-2D(u)) with D(u)=12(del u+(del u)inverted perpendicular), 3/2<p<3. In the case 3/2<p <= 9/5, we show that a suitable weak solution u is an element of W1,p(R3) satisfying lim infR ->infinity|uB(R)|=0 is trivial, i.e., u equivalent to 0. On the other hand, for 9/5<p<3 we prove the following Liouville type theorem: if there exists a matrix valued function V={Vij} such that partial derivative jVij=ui(summation convention), whose L3p2p-3 mean oscillation has the following growth condition at infinity, then u equivalent to 0.
引用
收藏
页码:1503 / 1517
页数:15
相关论文
共 19 条
[1]  
[Anonymous], 1983, MULTIPLE INTEGRALS C
[2]   On Liouville type theorem for the stationary Navier-Stokes equations [J].
Chae, Dongho ;
Wolf, Jorg .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (03)
[3]   On Liouville type theorems for the steady Navier-Stokes equations in R3 [J].
Chae, Dongho ;
Wolf, Joerg .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (10) :5541-5560
[4]   Liouville-Type Theorems for the Forced Euler Equations and the Navier-Stokes Equations [J].
Chae, Dongho .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (01) :37-48
[5]   On the Liouville theorem for the stationary Navier-Stokes equations in a critical space [J].
Chae, Dongho ;
Yoneda, Tsuyoshi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (02) :706-710
[6]   Frequency decay for Navier-Stokes stationary solutions [J].
Chamorro, Diego ;
Jarrin, Oscar ;
Lemarie-Rieusset, Pierre-Gilles .
COMPTES RENDUS MATHEMATIQUE, 2019, 357 (02) :175-179
[7]   On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method [J].
Frehse, J ;
Málek, J ;
Steinhauer, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 34 (05) :1064-1083
[8]  
Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9
[9]  
Gilbarg D., 1978, Ann. Sc. Norm. Sup. Pisa Cl. Sci., V5, P381
[10]   Liouville theorems for the Navier-Stokes equations and applications [J].
Koch, Gabriel ;
Nadirashvili, Nikolai ;
Seregin, Gregory A. ;
Sverak, Vladimir .
ACTA MATHEMATICA, 2009, 203 (01) :83-105